• Title/Summary/Keyword: number and quantify

Search Result 287, Processing Time 0.027 seconds

Torsional parameters importance in the structural response of multiscale asymmetric-plan buildings

  • Bakas, Nikolaos;Makridakis, Spyros;Papadrakakis, Manolis
    • Coupled systems mechanics
    • /
    • v.6 no.1
    • /
    • pp.55-74
    • /
    • 2017
  • The evaluation of torsional effects on multistory buildings remains an open issue, despite considerable research efforts and numerous publications. In this study, a large number of multiple test structures are considered with normally distributed topological attributes, in order to quantify the statistically derived relationships between the torsional criteria and response parameters. The linear regression analysis results, depict that the center of twist and the ratio of torsion (ROT) index proved numerically to be the most reliable criteria for the prediction of the modal rotation and displacements, however the residuals distribution and R-squared derived for the ductility demands prediction, was not constant and low respectively. Thus, the assessment of the torsional parameters' contribution to the nonlinear structural response was investigated using artificial neural networks. Utilizing the connection weights approach, the Center of Strength, Torsional Stiffness and the Base Shear Torque curves were found to exhibit the highest impact numerically, while all the other torsional indices' contribution was investigated and quantified.

Component Metrics to Measure Component Quality (컴포넌트 품질 측정을 위한 컴포넌트 메트릭)

  • Kim, Chul-Jin;Cho, Eun-Sook
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.12
    • /
    • pp.3715-3724
    • /
    • 2009
  • Recently, component-based software development is getting accepted in industry as a new effective software development paradigm. Since the introduction of component-based software engineering (CBSE) in later 90's, the CBSD research has focused largely on component modeling, methodology, architecture and component platform. However, as the number of components available on the market increases, it becomes more important to devise metrics to quantify the various characteristics of components. In this Paper, we propose metrics for measuring the complexity, customizability, and reusability of software components. Complexity metric can be used to evaluate the complexity of components. Customizability is used to measure how efficiently and widely the components can be customized for organization specific requirement. Reusability can be used to measure the degree of features that are reused in building applications. We expect that these metrics can be effectively used to quantify the characteristics of components.

The Characteristics of High Ozone Concentration.Yield Multi-discharge Type Ozonizer for Water Environment Improvement (수질환경개선용 고농도·고수율 다중방전형 오존발생기의 특성)

  • ;宋炫直
    • The Proceedings of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.13 no.2
    • /
    • pp.203-203
    • /
    • 1999
  • In this paper, high concentration·yield multi-discharge type ozonizer( MDO ) of new discharge type using superposed silent discharge was designed and manufactured. MDO can be consisted with 3 kind of superposed silent discharge type ozonizer( SDO ) in accordance with power supply method that supplying power, which has 180[°] phase difference, to 3 electrodes and double gap. At the moment discharge characteristics and ozone generation characteristics of each SDO were investigated in accordance with quantify of supplied gas, the number of SDO, and the shapes of each SDO. In result ozone generation characteristics of 17185[ppm] and 783[g/kWh] were obtained, and whorl ozone of 17185[ppm] was in contact with dyeing water waste decolonization characteristics was excellent, so it confirmed that MDO could be used as water environment improvement facility.

Flow-Induced Vibration Test in the Preheater Region of a Steam Generator Tube Bundle

  • Kim, Beom-Shig;Hwang, Jong-Keun
    • Nuclear Engineering and Technology
    • /
    • v.29 no.1
    • /
    • pp.85-91
    • /
    • 1997
  • Cross-flow existing in a shell-and-tube steam generator can cause a tube to vibrate. There are four regions subjected to cross-flow in Yonggwang units 3 and 4 (YGN 3 and 4) steam generators, which are of the same design as the steam generators for Palo Verde nuclear power plant Palo Verde units 1 and 2 steam generators have experienced localized oar at the comers of the cold side recirculating fluid inlet regions. A number of design modifications were made to preclude tube failure in specific regions of YGN 3 and 4 steam generators. Therefore, flow induced vibration experiments were done to determine the vibration magnitude of tubes in the economizer tube free lane region. The objective of this experiment is to demonstrate that the tube displacement is less than 0.01 inch rms at 100% of full power flow and to quantify the remaining design margin at 120ft and 140% of full power flow.

  • PDF

Creep Strain of Containment Concrete Structure (원자로 격납건물 콘크리트의 크리이프 변형 특성)

  • 방기성;정원섭;조명석;송영철
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1996.10a
    • /
    • pp.95-100
    • /
    • 1996
  • Creep, drying shrinkage, modulus of elasiticity and Poisson's ratio of concrete are influenced by a number of factors such as mix type, member thickness, curing condition and loading cases. Particularly, creep and shrinkage in concrete have yet to be studied due to its complicated time-dependent properties. In this study, the concrete creep tests were carried out at varous ages of loading-7, 28, 90, 180 and 365 days in order to investigate and quantify its long-term properties. The test procedures and analysis of the test results were also described herein. The results of this study will enable A/E to calculate effective prestressing forces considering time-dependent prestressing loss and evaluate the structural integrity of the prestressing system using the representative values derived from this property test.

  • PDF

Assessment of Insulation Condition in Operating Large Turbine Generator (운전중인 대형 터빈발전기에서 절연상태 평가)

  • 김희동
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.53 no.6
    • /
    • pp.324-329
    • /
    • 2004
  • Six stator slot couplers(SSC) and a flux probe sensor installed on the stator winding slots of large turbine generator. Assessment of insulation condition has been based upon the measurements of partial discharge(PD) of stator windings and shorted-turn of rotor windings in operating large turbine generator. The maximum PD magnitude(Qm), normalized quantify number(NQN), PD pattern and shorted-turn were measured using on-line insulation condition monitoring system. The NQN and Qm of slot PD side in the phase A are indicated the highest value in six SSC sensors. Monitoring system results showed that discharge at conductor surface and internal discharge were detected at the surface of stator winding and in voids of the groundwall insulation. Insulation of stator and rotor windings in large turbine generator was judged to be in good condition.

Shielding effects on a tall building from a row of low and medium rise buildings

  • Zu, G.B.;Lam, K.M.
    • Wind and Structures
    • /
    • v.27 no.6
    • /
    • pp.439-449
    • /
    • 2018
  • Wind loading of a tall building built amidst a group of buildings in urban environment is always greatly affected by shielding effects. Wind tunnel tests were carried out to assess the shielding provided by a row of low-rise or medium-rise buildings upstream a square-section tall building of height-to-breadth ratio 6. Mean and dynamic wind loads on the tall building were measured at different wind incidence angles and presented as interference factors (IFs). It is found that presence of a row of upstream buildings provides significant shielding to the tall building. At normal wind incidence, the mean along-wind loads and all components of fluctuating wind loads on the tall building are always reduced by shielding. Vortex shedding seems to still occur on the upper exposed part of the tall building but the vortex excitation levels are largely reduced. The degree of shielding is found to depend on a number of arrangement parameters of the row of upstream buildings. Empirical equations are proposed to quantify the shielding effect based on the wind tunnel data.

Intelligent Olfactory Sensor (지능형 후각센서)

  • Lee, D.S.;Ahn, C.G.;Kim, B.K.;Pyo, H.B.;Kim, J.T.;Huh, C.;Kim, S.H.
    • Electronics and Telecommunications Trends
    • /
    • v.34 no.4
    • /
    • pp.76-88
    • /
    • 2019
  • With advances in olfactory sensor technologies, the number of reports on various intelligent applications using multiple sensors (sensor arrays) are continuously increasing for fields such as medicine, environment, security, etc. For intelligent and point-of-care applications, it is not only important for the sensor technology to perform chemical or physical measurements rapidly and accurately, but it is also important for artificial intelligence technology to recognize and quantify specific chemicals or diagnose diseases such as lung cancer and diabetes. In particular, great advances in pattern recognition technologies, including deep learning algorithms, as well as sensor array technologies, are expected to enhance the potential of various types of olfactory intelligence applications, including early cancer diagnosis, drug seeking, military operations, and air pollution monitoring.

USING WEB CAMERA TECHNOLOGY TO MONITOR STEEL CONSTRUCTION

  • Kerry T. Slattery;Amit Kharbanda
    • International conference on construction engineering and project management
    • /
    • 2005.10a
    • /
    • pp.841-844
    • /
    • 2005
  • Computer vision technology can be used to interpret the images captured by web cameras installed on construction sites to automatically quantify the results. This information can be used for quality control, productivity measurement and to direct construction. Steel frame construction is particularly well suited for automatic monitoring as all structural members can be viewed from a small number of camera locations, and three-dimensional computer models of steel structures are frequently available in a standard electronic format. A system is being developed that interprets the 3-D model and directs a camera to look for individual members as regular intervals to determine when each is in place and report the results. Results from a simple lab-scale system are presented along with preliminary full-scale development.

  • PDF

Assessment of seismic design coefficients for composite special moment frames with reinforced concrete columns and steel beams: Evaluation of code recommendations

  • Elmira Tavasoli Yousef Abadi;Mohammad T. Kazemi
    • Steel and Composite Structures
    • /
    • v.50 no.6
    • /
    • pp.643-658
    • /
    • 2024
  • The main aim of this study is to quantify the code seismic design coefficients of the RCS system, which consisted of reinforced concrete columns and steel beams, based on the FEMA P-695 methodology. The underlying intention is to evaluate the seismic performance of the RCS system at the system level rather than the connection level. A set of 24 archetype buildings with a various number of stories, beam span lengths, gravity load levels, and seismic load levels are selected and designed based on the prevailing code requirements. Nonlinear analytical models are developed and validated by experimental tests. The pushover and response history dynamic analyses are conducted to evaluate the required data in the performance quantification process. The results show that the design coefficients suggested by the code are acceptable. However, the level of conservatism is very high. Thus, it is possible to use a larger R-factor in the design process or make some relaxations in the design requirements related to this structural system.