• 제목/요약/키워드: nueral network

검색결과 13건 처리시간 0.02초

1D-CNN을 이용한 항만내 선박 이동시간 예측 (Prediction of Ship Travel Time in Harbour using 1D-Convolutional Neural Network)

  • 유상록;김광일;정초영
    • 한국항해항만학회:학술대회논문집
    • /
    • 한국항해항만학회 2022년도 춘계학술대회
    • /
    • pp.275-276
    • /
    • 2022
  • 해상교통관제사는 항로폭이 협소한 항만에서 선박 충돌사고 예방을 위해 one-way로 항해하도록 선박의 입·출항 대기 지시를 한다. 현재 해상교통관제사의 입·출항대기 지시는 과학적이고 통계적인 데이터를 기반으로 하지 않고 해상교통관제사의 개인 역량에 따라 편차가 크다. 이에 따라 본 연구에서는 항만에서의 선박 입·출항 대기 지시를 위한 정확한 이동 시간을 예측하기 위해 선박 및 기상 데이터를 수집하여 1d-합성곱신경망 모델을 구축하였다. 제안한 모델이 다른 앙상블 기계학습 모델보다 4.5% 이상 개선된 것을 확인하였다. 본 연구를 통해 다양한 상황에서도 선박 입·출항 소요시간 예측이 가능하여 해상교통관제사는 선박에게 정확한 정보 제공 및 대기지시 판단에 도움이 될 것으로 기대된다.

  • PDF

내시경 병리소견 분류를 위한 비전 트랜스포머 (Vision transformers for endoscopic pathological findings classification)

  • 겔란 아야나;최세운
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2022년도 춘계학술대회
    • /
    • pp.396-398
    • /
    • 2022
  • 위장관의 내시경적 병리학적 소견은 대장암의 조기 진단에 중요하다. 최근 CNN 기반 딥 러닝의 활용은 주관적 분석의 정확도와 조기 진단의 성능을 높이는 결과를 보였으나, 계산 복잡도가 높고 임상에 즉시 활용하기에는 상대적으로 낮은 정확도로 사용에 제한적이다. 이러한 문제를 해결하기 위해 본 논문에서는 대장암의 조기 발견을 위한 비전 트랜스포머 기반 내시경 병리 소견 분류법을 제안한다. 식도염, 폴립, 궤양성 대장염을 포함한 병리학적 소견이 있는 내시경 이미지를 각각 1,000개씩 사용하였으며, 제안된 접근 방식을 사용하여 세 가지 병리학적 소견을 분류할 때 98%의 분류 정확도를 보였다.

  • PDF

FNN 기반 신경회로망을 이용한 기상 레이더 에코 분류기 설계 : 에코판단 모듈의 비교 분석 (Design of Meteorological Radar Echo Classifier Using Fuzzy Relation-based Neural Networks : A Comparative Studies of Echo Judgement Modules)

  • 고준현;송찬석;오성권
    • 한국지능시스템학회논문지
    • /
    • 제24권5호
    • /
    • pp.562-568
    • /
    • 2014
  • 기상레이더에는 강수에코와 비강수 에코가 섞여 존재한다. 이런 모호한 지점의 판단이 난해함으로 정확한 일기 예보를 하기는 매우 어려운 일이다. 본 논문에서는 기상청 레이더의 UF 데이터로부터 데이터를 추출하였다. 설계하는 두 분류기의 입출력 데이터는 강수 에코와 비 강수 에코의 특성분석을 통해 구성된다. 더 좋은 성능을 나타나는 입력변수를 사용 하였으며, 에코분류기는 퍼지 뉴럴 네트워크를 기반으로 설계한다. 에코 판단모듈 1과 판단모듈 2를 고려하여 에코분류기의 성능 비교연구를 수행 한다.