• Title/Summary/Keyword: nuclear space

Search Result 632, Processing Time 0.028 seconds

COMPUTATIONAL INTELLIGENCE IN NUCLEAR ENGINEERING

  • UHRIG ROBERT E.;HINES J. WESLEY
    • Nuclear Engineering and Technology
    • /
    • v.37 no.2
    • /
    • pp.127-138
    • /
    • 2005
  • Approaches to several recent issues in the operation of nuclear power plants using computational intelligence are discussed. These issues include 1) noise analysis techniques, 2) on-line monitoring and sensor validation, 3) regularization of ill-posed surveillance and diagnostic measurements, 4) transient identification, 5) artificial intelligence-based core monitoring and diagnostic system, 6) continuous efficiency improvement of nuclear power plants, and 7) autonomous anticipatory control and intelligent-agents. Several changes to the focus of Computational Intelligence in Nuclear Engineering have occurred in the past few years. With earlier activities focusing on the development of condition monitoring and diagnostic techniques for current nuclear power plants, recent activities have focused on the implementation of those methods and the development of methods for next generation plants and space reactors. These advanced techniques are expected to become increasingly important as current generation nuclear power plants have their licenses extended to 60 years and next generation reactors are being designed to operate for extended fuel cycles (up to 25 years), with less operator oversight, and especially for nuclear plants operating in severe environments such as space or ice-bound locations.

Nuclear Power Plants' Main Control Room Case analysis for Specialized Space Design (원자력 발전소 주제어실 사례를 통한 특수공간 디자인에 관한 기초적 연구)

  • Lee, Seung-Hoon;Back, Seong-Kyung;Lee, Sang-Ho
    • Korean Institute of Interior Design Journal
    • /
    • v.16 no.5
    • /
    • pp.81-88
    • /
    • 2007
  • Energy consumption has been increased world widely, and the energy retain is one of the most important economic alternatives. These tendencies expand the nuclear power plants not only quantitatively but also qualitatively. Despite of the increasing construction of nuclear power plants and related facilities, every system in main control room(MCR) has been designed and administered solely based on the safety-first principles because of the specificity of nuclear industry. However, recent main control rooms started with the concept that the operators' performance could be optimized though the organic interrelation between human, machine, and environments. Now, it has been recognised in the scope of Ergonomics and Space Design which acknowledge our living spaces as Man-Environment Interface and this change connotes the MCR spaces should be special spaces rather than ordinary spaces. This research investigated domestic and foreign nuclear power plants' MCRs to suggest basic alternatives which can be applied to future MCR. With the review of characteristics of MCR, an integration of interior design, lighting and Ergonomics was explored and classified as types. Futhermore, the classification of environmental characteristics within the relationships between human, machine, and environments was developed through the case analysis of nuclear power plants. The results of this study will provide a basis of space design for system environments that the high level of safety and function are extremely important.

Evaluation of SPACE Code Prediction Capability for CEDM Nozzle Break Experiment with Safety Injection Failure (안전주입 실패를 동반한 제어봉구동장치 관통부 파단 사고 실험 기반 국내 안전해석코드 SPACE 예측 능력 평가)

  • Nam, Kyung Ho
    • Journal of the Korean Society of Safety
    • /
    • v.37 no.5
    • /
    • pp.80-88
    • /
    • 2022
  • The Korean nuclear industry had developed the SPACE (Safety and Performance Analysis Code for nuclear power plants) code, which adopts a two-fluid, three-field model that is comprised of gas, continuous liquid and droplet fields and has the capability to simulate three-dimensional models. According to the revised law by the Nuclear Safety and Security Commission (NSSC) in Korea, the multiple failure accidents that must be considered for the accident management plan of a nuclear power plant was determined based on the lessons learned from the Fukushima accident. Generally, to improve the reliability of the calculation results of a safety analysis code, verification is required for the separate and integral effect experiments. Therefore, the goal of this work is to verify the calculation capability of the SPACE code for multiple failure accidents. For this purpose, an experiment was conducted to simulate a Control Element Drive Mechanism (CEDM) break with a safety injection failure using the ATLAS test facility, which is operated by Korea Atomic Energy Research Institute (KAERI). This experiment focused on the comparison between the experiment results and code calculation results to verify the performance of the SPACE code. The results of the overall system transient response using the SPACE code showed similar trends with the experimental results for parameters such as the system pressure, mass flow rate, and collapsed water level in component. In conclusion, it can be concluded that the SPACE code has sufficient capability to simulate a CEDM break with a safety injection failure accident.

Review of Computational Methods for Space-time Reactor Kinetics

  • Chae, Sung-Ki
    • Nuclear Engineering and Technology
    • /
    • v.11 no.3
    • /
    • pp.219-229
    • /
    • 1979
  • The current status of the computational methods and computer codes for the analysis of reactor kinetics is reviewed. Computational methods which have been developed for space-dependent transient analyses are presented and recent progress in the development of methods is discussed.

  • PDF

Wavelet operator for multiscale modeling of a nuclear reactor

  • Vajpayee, Vineet;Mukhopadhyay, Siddhartha;Tiwari, Akhilanand Pati
    • Nuclear Engineering and Technology
    • /
    • v.50 no.5
    • /
    • pp.698-708
    • /
    • 2018
  • This article introduces a methodology of designing a wavelet operator suitable for multiscale modeling. The operator matrix transforms states of a multivariable system onto projection space. In addition, it imposes a specific structure on the system matrix in a multiscale environment. To be specific, the article deals with a diagonalizing transform that is useful for decoupled control of a system. It establishes that there exists a definite relationship between the model in the measurement space and that in the projection space. Methodology for deriving the multirate perfect reconstruction filter bank, associated with the wavelet operator, is presented. The efficacy of the proposed technique is demonstrated by modeling the point kinetics nuclear reactor. The outcome of the multiscale modeling approach is compared with that in the single-scale approach to bring out the advantage of the proposed method.

Redundant Sensor Signal Validation of Nuclear Power Plants Using the Simplified Parity Space Method (단순화된 패리티 공간기법을 이용한 원전 다중센서 신호검증)

  • Oh, S.H.;Kim, D.I.;Zoo, O.P.;Chung, Y.H.;Ryu, B.H.;Lim, C.H.;Kim, K.J.
    • Proceedings of the KIEE Conference
    • /
    • 1993.11a
    • /
    • pp.317-319
    • /
    • 1993
  • The function estimation characteristics of neural networks can be used for sensor signal validation of a system. In case of applying the neural networks to signal validation, it is a important problem that the redundant sensor signals used as a input signal of neural networks should be validated. In this paper, we simplify the conventional parity space method in order to input the validated signal to the neural networks and also propose the sensor signal validation method, which estimates the reliable sensor output combining neural networks with the simplified parity space method. The acceptability of the proposed signal validation method is demonstrated by using the simulation data in safety injection accident of nuclear power plants.

  • PDF

The importance of nuclear energy for the expansion of world's energy demand

  • Guk, Erdogan;Kalkan, Naci
    • Advances in Energy Research
    • /
    • v.3 no.2
    • /
    • pp.71-80
    • /
    • 2015
  • This paper describes nuclear energy technologies for the solution of long term energy problem with better reliability. A short overview about nuclear energy applications are explained with a basic analysis of energy. Furthermore, industrial application, space application of nuclear systems and ship propulsion in nuclear energy application are demonstrated in more detail. This report also includes some examples of the experienced nuclear power plant to identify energy production. The general purpose of the article is to understand how efficiently nuclear systems generates energy, and solve the world's increasing energy demand in our century.

Use of Nuclear Power Sources in Outer Space and Space Law (우주에서의 핵연료(NPS)사용과 우주법)

  • Kim, Han-Taek
    • The Korean Journal of Air & Space Law and Policy
    • /
    • v.22 no.1
    • /
    • pp.29-54
    • /
    • 2007
  • Nuclear Power Sources(NPS) have been used since 1961 for the purpose of generating energy for space objects and have since then been recognized as particularly suited essential to some space operations. In January 1978 a malfuctioning Soviet nuclear powered satellite, Cosmos 954, re-entered the earth's atmosphere and disintegrated, scattering radioactive debris over a wide area of the Canadian Northwest Territory. This incident provided some reasons to international legal scholars to make some principles to regulate using NPS in outer space. In 1992 General Assembly adopted "Principles Relevant to the Use of Nuclear Power Sources in Outer Space". These NPS Principles set out certain legal and regulatory requirements on the use of nuclear and radioactive power sources for non-propulsive purposes. Although these principles, called 'soft laws', are not legal norms, they have much enfluences on state practices such as 1983 DBS Principles(Principles Governing the Use by States of Artificial Earth Satellites for International Direct Television Broadcasting), 1986 RS Principles(Principles Relating to Remote Sensing of the Earth from Space) and 1996 Declaration on International Cooperation in the Exploration and Use of Outer Space for the Benefit and in the Interests of all States, Taking into Particular Account the Needs of Developing Countries. As far as 1963 Declaration of Legal Principles Governing the Activities of States in the Exploration and Use of Outer Space is concerned the main points such as free use of outer space, non-appropriation of celestial bodies, application of international law to outer space etc. have become customary international law binding all states. NPS Principles might have similar characters according to states' willingness to respect them.

  • PDF

Use of Nuclear Power Sources in Outer Space and Space Law (우주에서의 핵연료(NPS)사용과 우주법)

  • Kim, Han-Taek
    • The Korean Journal of Air & Space Law and Policy
    • /
    • no.spc
    • /
    • pp.35-58
    • /
    • 2007
  • Nuclear Power Sources(NPS) have been used since 1961 for the purpose of generating energy for space objects and have since then been recognized as particularly suited essential to some space operations. In January 1978 a malfuctioning Soviet nuclear powered satellite, Cosmos 954, re-entered the earth's atmosphere and disintegrated, scattering radioactive debris over a wide area of the Canadian Northwest Territory. This incident provided some reasons to international legal scholars to make some principles to regulate using NPS in outer space. In 1992 General Assembly adopted "Principles Relevant to the Use of Nuclear Power Sources in Outer Space". These NPS Principles set out certain legal and regulatory requirements on the use of nuclear and radioactive power sources for non-propulsive purposes. Although these principles, called 'soft laws', are not legal norms, they have much enfluences on state practices such as 1983 DBS Principles(Principles Governing the Use by States of Artificial Earth Satellites for International Direct Television Broadcasting), 1986 RS Principles(Principles Relating to Remote Sensing of the Earth from Space) and 1996 Declaration on International Cooperation in the Exploration and Use of Outer Space for the Benefit and in the Interests of all States, Taking into Particular Account the Needs of Developing Countries. As far as 1963 Declaration of Legal Principles Governing the Activities of States in the Exploration and Use of Outer Space is concerned the main points such as free use of outer space, non-appropriation of celestial bodies, application of international law to outer space etc. have become customary international law binding all states. NPS Principles might have similar characters according to states' willingness to respect them.

  • PDF

Design and heat transfer optimization of a 1 kW free-piston stirling engine for space reactor power system

  • Dai, Zhiwen;Wang, Chenglong;Zhang, Dalin;Tian, Wenxi;Qiu, Suizheng;Su, G.H.
    • Nuclear Engineering and Technology
    • /
    • v.53 no.7
    • /
    • pp.2184-2194
    • /
    • 2021
  • The Free-Piston Stirling engine (FPSE) is of interest for many research in aerospace due to its advantages of long operating life, higher efficiency, and zero maintenance. In this study, a 1-kW FPSE was proposed by analyzing the requirements of Space Reactor Power Systems (SRPS), of which performance was evaluated by developing a code through the Simple Analysis Method. The results of SAM showed that the critical parameters of FPSE could satisfy the designed requirements. The heater of the FPSE was designed with the copper rectangular fins to enhance heat transfer, and the parametric study of the heater was performed with Computational Fluid Dynamics (CFD) software STAR-CCM+. The Performance Evaluation Criteria (PEC) was used to evaluate the heat transfer enhancement of the fins in the heater. The numerical results of the CFD program showed that pressure drop and Nusselt number ratio had a linear growth with the height of fins, and PEC number decreased as the height of fins increased, and the optimum height of the fin was set as 4 mm according to the minimum heat exchange surface area. This paper can provide theoretical supports for the design and numerical analysis of an FPSE for SRPSs.