• Title/Summary/Keyword: nuclear protein

Search Result 1,646, Processing Time 0.035 seconds

Changes in Chemical Compositions of Pumpkin(Cucurbita moschata DUCH.) Seed Sprouts (호박(Cucurbita moschata DUCH.)종실의 발아 성장 과정 중 성분 변화)

  • 이병진;장희순;이규희;오만진
    • Food Science and Preservation
    • /
    • v.10 no.4
    • /
    • pp.527-533
    • /
    • 2003
  • This study was performed for increasing the consumption and developing the function of pumpkin(Cucurbita moschata DUCH.) seed. The changes of the contents of general chemical compositions, fatty acids, amino acids, ascorbic acid and ${\beta}$-carotene during sprouting were analyzed. Also, the bitter taste, which was produced during sprouting, were purified by using thin layer chromatography and preparative high pressure liquid chromatography. The purified bitter compound was identified by mass spectrum and nuclear magnetic resonance($^1$H '||'&'||' $\^$13/C-NMR). Weight of pumpkin seed sprout was increased to 348.4% and the length of stem was dramatically increased at 8 days. In each head and stem parts of the pumpkin seed sprout, the contents of protein and lipid were decreased, however, the contents of fiber, ash and soluble inorganic nitrogen were increased. The fatty acids of the pumpkin seed sprout were mainly represented as linoleic acid, oleic acid, palmitic acid and stearic acid. During sprouting, palmitic acid was gradually increased, reversely, linoleic acid was gradually decreased. The general amino acids of head part in the pumpkin seed sprout grown at 23$^{\circ}C$ during 8 days were orderly more contained glycine, alanine, arginine, cystein and proline. Those of free amino acids were orderly more contained arginine, threonine, alanine and glutamine. The contents of L-ascorbic acid and ${\beta}$-camtene of the pumpkin seed sprout were gradually increased with increasing sprouting days. The bitter taste material of head part of the pumpkin seed sprout was detected at Rf value 0.72 on silicagel TLC plate and separuted as one peak by HPLC. The chemical structure of the puified bitter compound was identified as a cucurbitacin glycoside by MS and NMR. The content of bitter compound at 8 days was contained 42.2 mg per 1kg sprout head.

THE EFFECTS OF ${\beta}-TCP$/rhBMP-2 ON BONE FORMATION IN OSTEOBLAST-LIKE CELLS INDUCED FROM BONE MARROW-DERIVED MESENCHYMAL STEM CELLS (골수유래줄기세포에서 분화된 골유사세포에서 ${\beta}-TCP$와 rhBMP-2의 골형성 효과에 관한 연구)

  • Choi, Yong-Soo;Hwang, Kyung-Gyun;Lee, Jae-Seon;Park, Chang-Joo;Shim, Kwang-Sup
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.34 no.4
    • /
    • pp.419-427
    • /
    • 2008
  • The present study aimed to investigate the osteogenic potentials of differentiated osteoblast-like cells (DOCs) induced from bone marrow-derived mesenchymal stem cells (MSCs) on ${\beta}-tricalcium$ phosphate (${\beta}-TCP$) with recombinant human bone morphogenetic protein (rhBMP-2) in vitro. Osteoblast differentiation was induced in confluent cultures by adding 100 nM dexamethasone, 10 mM ${\beta}$-glycerophosphate, 50 mM L-ascorbic acid. The Alizarin red S staining and reverse transcriptase-polymerase chain reaction (RT-PCR) were perfomed to examine the mRNA expression of alkaline phosphatase (ALP), bone sialoprotein (BSP), osteocalcin (OCN), receptor activator for nuclear factor ${\kappa}B$ ligand (RANKL), runt-related transcription factor 2 (RUNX2), collagen-Ⅰ (COL-Ⅰ). There were no significant differences in the osteogenic potentials of DOCs induced from MSCs on ${\beta}-TCP(+/-)$. According to the incubation period, there were significant increasing of Alizadin red S staining in the induction 3 weeks. The mRNA expression of ALP, RUNX2, and RANKL were higher in DOCs/${\beta}-TCP(-)$ than DOCs/${\beta}-TCP(+)$. According to rhBMP-2 concentrations, the mRNA expression of BSP was significantly increased in DOCs/${\beta}-TCP(+)$ compared to that of DOCs/${\beta}-TCP(-)$ on rhBMP 10 ng/ml. Our study presented the ${\beta}-TCP$ will have the possibility that calcium phosphate directly affect the osteoblastic differentiation of the bone marrowderived MSCs.

Morphology of Tooth and Smad4 Expression in NFI-C Deficient Mouse (Nuclear Factor I-C 결손생쥐에서 치아의 형태학적 변화와 Smad4의 발현)

  • Bae, Hyun-Sook;Kim, Hye-Mi;Cho, Young-Sik;Park, Su-Jin;Choi, Moon-Sil
    • Journal of dental hygiene science
    • /
    • v.10 no.5
    • /
    • pp.395-401
    • /
    • 2010
  • Over expression of TGF-${\beta}1$ revealed the same phenotype as NFI-C deficient mouse. It has been reported that NFI-C deficient mice demonstrated abnormal odontoblast differentiation and aberrant dentin formation during root development. In the present study, in order to investigate the histological differences between wild type (WT) mouse and NFI-C deficient mouse, we compared morphological characteristics and smad4 expression between those mice. Hematoxyline-eosin (H-E) staining was used to investigate morphological changes and immunohistochemistry was also performed to observe the Smad4 expression pattern. In H-E staining, incisor of NFI-C deficient mouse showed an open area in the lingual root, irregular odontoblasts and osteodentin. Also, NFI-C deficient mouse showed short root and osteodentin in molar. In addition, Smad4 protein was strongly expressed in NFI-C deficient mouse compared with wild type. These findings suggest that NFI-C deficiency affects odontoblast differentiation and result in the formation of abnormal roots. Therefore, balancing between NFI-C and TGF-${\beta}$ signaling including Smad4 is important for the regulation of normal odontoblast differentiation and dentin formation.

Inhibitory effect of Fagopyrum esculentum on degranulation and production of cytokine in RBL-2H3 cells (교맥의 RBL-2H3 비만세포 탈과립과 cytokine 생산 억제 효과)

  • Kang, Kyung-Hwa;Lee, Seung-Yeon
    • The Journal of Korean Medicine Ophthalmology and Otolaryngology and Dermatology
    • /
    • v.25 no.3
    • /
    • pp.1-12
    • /
    • 2012
  • Objectives : Fagopyrum esculentum(FE) has been used for removal of inflammation of internal organs and treatment of sore and ulcer by heat toxin in Korean herbal medicines. In this study, To investigated the protective effect of FE on allergic response, we determined whether FE inhibits allergic response. Methods : The effect of FE was analyzed by ELISA, RT-PCR and Western blot in RBL-2H3 cells. We investigated cell viability, ${\beta}$-hexosaminidase, as a marker of degranulation, cytokne, and intracellular ROS and MAPK and NF-${\kappa}B$ signaling. Results : We found that FE suppressed ${\beta}$-hexosaminidase release, the production of IL-4 and TNF-${\alpha}$ and intracellular ROS level in RBL-2H3 by the anti-DNP IgE plus DNP-HSA stimulation. FE also significantly inhibited cytokine mRNA expressions, such as IL-$1{\beta}$, IL-2, IL-3, IL-4, IL-5, IL-6, IL-13, TNF-${\alpha}$ and GM-CSF in RBL-2H3. In addition, PF suppressed the phospholyation of ERK1/2, JNK1/2, p38 and $I{\kappa}B{\alpha}$ and NF-${\kappa}B$ signal transduction pathway. Conclusions : Our results indicate that FE protects against allergic response and exerts an anti-inflammatory effect through the inhibition of degranulation and production of cytokines and ROS via the suppression MAPK and NF-${\kappa}B$ of signal transduction. Abbrevations : FE, Fagopyrum esculentum; RBL-2H3, rat basophilic leukemia cell line; ROS, reactive oxygen species; MAPK, Mitogen-activated protein kinase; $NF{\kappa}B$, nuclear factor ${\kappa}B$; $TNF{\alpha}$, Tumor necrosis factor alpha; GM-CSF, Granulocyte macrophage colony-stimulating factor; ERK, extracellular-signal-regulated kinase; JNK, c-Jun NH2-terminal kinase; p38, p38 MAP kinase; $I{\kappa}B{\alpha}$, inhibitory-kappa B alpha.

Comprehensive comparative analysis of chloroplast genomes from seven Panax species and development of an authentication system based on species-unique single nucleotide polymorphism markers

  • Nguyen, Van Binh;Giang, Vo Ngoc Linh;Waminal, Nomar Espinosa;Park, Hyun-Seung;Kim, Nam-Hoon;Jang, Woojong;Lee, Junki;Yang, Tae-Jin
    • Journal of Ginseng Research
    • /
    • v.44 no.1
    • /
    • pp.135-144
    • /
    • 2020
  • Background: Panax species are important herbal medicinal plants in the Araliaceae family. Recently, we reported the complete chloroplast genomes and 45S nuclear ribosomal DNA sequences from seven Panax species, two (P. quinquefolius and P. trifolius) from North America and five (P. ginseng, P. notoginseng, P. japonicus, P. vietnamensis, and P. stipuleanatus) from Asia. Methods: We conducted phylogenetic analysis of these chloroplast sequences with 12 other Araliaceae species and comprehensive comparative analysis among the seven Panax whole chloroplast genomes. Results: We identified 1,128 single nucleotide polymorphisms (SNP) in coding gene sequences, distributed among 72 of the 79 protein-coding genes in the chloroplast genomes of the seven Panax species. The other seven genes (including psaJ, psbN, rpl23, psbF, psbL, rps18, and rps7) were identical among the Panax species. We also discovered that 12 large chloroplast genome fragments were transferred into the mitochondrial genome based on sharing of more than 90% sequence similarity. The total size of transferred fragments was 60,331 bp, corresponding to approximately 38.6% of chloroplast genome. We developed 18 SNP markers from the chloroplast genic coding sequence regions that were not similar to regions in the mitochondrial genome. These markers included two or three species-specific markers for each species and can be used to authenticate all the seven Panax species from the others. Conclusion: The comparative analysis of chloroplast genomes from seven Panax species elucidated their genetic diversity and evolutionary relationships, and 18 species-specific markers were able to discriminate among these species, thereby furthering efforts to protect the ginseng industry from economically motivated adulteration.

A Study on the Safety of Stevioside as a New Sweetening Source (신(新) 감미(甘味) 자원(資源) Stevioside의 안전성(安全性)에 관(關)한 연구(硏究))

  • Lee, Sang-Jik;Lee, Kap-Rang;Park, Jyung-Rewng;Kim, Kwang-Soo;Tchai, Bum-Suk
    • Korean Journal of Food Science and Technology
    • /
    • v.11 no.4
    • /
    • pp.224-231
    • /
    • 1979
  • The safety of the sweetening component of stevia was studied by administrating it to the rats. The $LD_{50}$ determined by intraperitoneal injection was 3,400 mg/Kg as the stevia extract containing 50 % stevioside, i.e. $LD_{50}$ of stevioside was more than 1,700 mg/Kg. Oral administration of large quantities of the stevia extract for 56 days resulted in no effect on the growth of rats. The analyses of total blood (RBC, WBC, Hb and Hct), 17 blood serum components including total protein, glucose, cholesterol, GOT, and 11 items of findings on the liver tissues including nuclear deterioration of liver cells, proliferation of Kupffer cells, fibrosis of portal area showed no significant differences between control and treatments except lactate dehydrogenase activity after 56 day-oral administration of the extract. From the results obtained, it was supposed that the stevia extract/stevioside revealed no acute or sub-acute toxic effects on rats.

  • PDF

Regulation of CYP1A1 and Inflammatory Cytokine by NCOA7 Isoform 4 in Response to Dioxin Induced Airway Inflammation

  • Cho, Sung-Hwan;Park, Shin Young;Lee, Eun Jeong;Cho, Yo Han;Park, Hyun Sun;Hong, Seok-Ho;Kim, Woo Jin
    • Tuberculosis and Respiratory Diseases
    • /
    • v.78 no.2
    • /
    • pp.99-105
    • /
    • 2015
  • Background: Aryl hydrocarbon receptor (AhR), a ligand-dependent transcription factor, binds to a wide variety of synthetic and naturally occurring compounds. AhR is involved in the regulation of inflammatory response during acute and chronic respiratory diseases. We investigated whether nuclear receptor coactivator 7 (NCOA7) could regulate transcriptional levels of AhR target genes and inflammatory cytokines in 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)-treated human bronchial epithelial cells. This study was based on our previous study that NCOA7 was differentially expressed between normal and chronic obstructive pulmonary disease lung tissues. Methods: BEAS-2B and A549 cells grown under serum-free conditions were treated with or without TCDD (0.15 nM and 6.5 nM) for 24 hours after transfection of pCMV-NCOA7 isoform 4. Expression levels of cytochrome P4501A1 (CYP1A1), IL-6, and IL-8 were measured by quantitative real-time polymerase chain reaction. Results: The transcriptional activities of CYP1A1 and inflammatory cytokines were strongly induced by TCDD treatment in both BEAS-2B and A549 cell lines. The NCOA7 isoform 4 oppositely regulated the transcriptional activities of CYP1A1 and inflammatory cytokines between BEAS-2B and A549 cell lines. Conclusion: Our results suggest that NCOA7 could act as a regulator in the TCDD-AhR signaling pathway with dual roles in normal and abnormal physiological conditions.

Immunomodulating Effect of Extract of Cheonggukjang Fermented with Bacillus amyloliquefaciens (SRCM100730) on RAW 264.7 Macrophages (Bacillus amyloliquefaciens(SRCM 100730)로 발효된 청국장 추출물의 RAW 264.7 대식세포 면역증강 활성)

  • Choo, Seung Bin;Yang, Hui;Jeong, Do-Yuon;Jeong, Seong-Yeop;Ryu, Myeong Seon;Oh, Kwang-Hoon;Yoo, Yung Choon
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.46 no.11
    • /
    • pp.1300-1307
    • /
    • 2017
  • Cheonggukjang is well known as a traditional fermented food in Korea and has various biological activity. In this study, immune-enhancing activity of extract of cheonggukjang fermented with Bacillus amyloliquefaciens (SRCM100730) was examined in RAW 264.7 murine macrophages. Treatment with extract augmented production of nitric oxide (NO) and tumor necrosis $factor-{\alpha}$ ($TNF-{\alpha}$) from RAW 264.7 macrophages in a dose-dependent manner. Similarly, increased mRNA expression of inducible nitric oxide synthase (iNOS) and $TNF-{\alpha}$ was observed. In addition, the extract synergistically enhanced production of NO and $TNF-{\alpha}$ from lipopolysaccharide (LPS)-stimulated macrophages. Analysis of intracellular pathways revealed that the immune-enhancing activity of cheonggukjang extract was related to activation of mitogen-activated protein kinases (MAPK) and nuclear factor kappa-light-chain-enhancer of activated B cells ($NF-{\kappa}B$). These results suggest that cheonggukjang fermented with B. amyloliquefaciens (SRCM100730) is a beneficial food effective for activation of immune responses.

Anti-inflammatory Effects of Sophora Japonica Aqueous Extract (괴화(槐花) 물 추출물의 항염증 효과)

  • Bae, Gi-Sang;Jo, Beom-Yeon;Kim, Min-Sun;Park, Kyoung-Chel;Koo, Bon-Soon;Seo, Sang-Wan;Kim, Sung-Gyu;Yun, Seung-Won;Jung, Won-Seok;Ham, Kyung-Wan;Song, Ho-Joon;Youn, Myung-Ja;Jeon, Ho-Seong;Kwon, Kang-Beom;Kim, Jae-Hyo;Park, Sung-Joo
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.23 no.6
    • /
    • pp.1392-1398
    • /
    • 2009
  • The purpose of this study was to investigate the anti-inflammatory effects of aqueous extract from Sophora Japonica (SJ) on the RAW 264.7 cells. To evaluate the anti-inflammatory effects of SJ, we examined the cytokine productions including nitric oxide (NO), interleukin (IL)-1b, IL-6 and tumor necrosis factor-a (TNF-a) in lipopolysaccharide (LPS)-induced RAW 264.7 cells and also inhibitory mechanisms such as mitogen-activated protein kinases (MAPKs) and nuclear factor kappa b (NF-kB) using Western blot. SJ inhibited LPS-induced production of NO, TNF-a but not of IL-1b and IL-6 in RAW 264.7 cells. SJ inhibited the activation of MAPKs such as extracelluar signal-regulated kinase (ERK 1/2), c-Jun NH2-terminal kinase (JNK) and p38 but not of NF-kB in the LPS-stimulated RAW 264.7 cells. In conclusion, SJ down-regulated LPS-induced NO and TNF-a productions via MAPKs, which could be a clinical basis for inflammatory diseases and autoimmune diseases.

Protective effects of perilla oil and alpha linolenic acid on SH-SY5Y neuronal cell death induced by hydrogen peroxide

  • Lee, Ah Young;Choi, Ji Myung;Lee, Myoung Hee;Lee, Jaemin;Lee, Sanghyun;Cho, Eun Ju
    • Nutrition Research and Practice
    • /
    • v.12 no.2
    • /
    • pp.93-100
    • /
    • 2018
  • BACKGROUND/OBJECTIVE: Oxidative stress plays a key role in neuronal cell damage, which is associated with neurodegenerative disease. The aim of present study was to investigate the neuroprotective effects of perilla oil (PO) and its active component, alpha-linolenic acid (ALA), against hydrogen peroxide $(H_2O_2)$-induced oxidative stress in SH-SY5Y neuronal cells. MATERIALS/METHODS: The SH-SY5Y human neuroblastoma cells exposed to $250{\mu}M$ $H_2O_2$ for 24 h were treated with different concentrations of PO (25, 125, 250 and $500{\mu}g/mL$) and its major fatty acid, ALA (1, 2.5, 5 and $25{\mu}g/mL$). We examined the effects of PO and ALA on $H_2O_2$-induced cell viability, lactate dehydrogenase (LDH) release, and nuclear condensation. Moreover, we determined whether PO and ALA regulated the apoptosis-related protein expressions, such as cleaved-poly ADP ribose polymerase (PARP), cleaved caspase-9 and -3, BCL-2 and BAX. RESULTS: Treatment of $H_2O_2$ resulted in decreased cell viability, increased LDH release, and increase in the nuclei condensation as indicated by Hoechst 33342 staining. However, PO and ALA treatment significantly attenuated the neuronal cell death, indicating that PO and ALA potently blocked the $H_2O_2$-induced neuronal apoptosis. Furthermore, cleaved-PARP, cleaved caspase-9 and -3 activations were significantly decreased in the presence of PO and ALA, and the $H_2O_2$-induced up-regulated BAX/BCL-2 ratio was blocked after treatment with PO and ALA. CONCLUSIONS: PO and its main fatty acid, ALA, exerted the protective activity from neuronal oxidative stress induced by $H_2O_2$. They regulated apoptotic pathway in neuronal cell death by alleviation of BAX/BCL-2 ratio, and down-regulation of cleaved-PARP and cleaved caspase-9 and -3. Although further studies are required to verify the protective mechanisms of PO and ALA from neuronal damage, PO and ALA are the promising agent against oxidative stress-induced apoptotic neuronal cell death.