• Title/Summary/Keyword: nuclear fuel integrity

Search Result 208, Processing Time 0.026 seconds

Design and Structural Safety Evaluation of Canister for Dry Storage System of PWR Spent Nuclear Fuels

  • Taehyung Na;Youngoh Lee;Taehyeon Kim;Donghee Lee
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.21 no.4
    • /
    • pp.559-570
    • /
    • 2023
  • The aim of this study is to ensure the structural integrity of a canister to be used in a dry storage system currently being developed in Korea. Based on burnup and cooling periods, the canister is designed with 24 bundles of spent nuclear fuel stored inside it. It is a cylindrical structure with a height of 4,890 mm, an internal diameter of 1,708 mm, and an inner length of 4,590 mm. The canister lid is fixed with multiple seals and welds to maintain its confinement boundary to prevent the leakage of radioactive waste. The canister is evaluated under different loads that may be generated under normal, off-normal, and accident conditions, and combinations of these loads are compared against the allowable stress thresholds to assess its structural integrity in accordance with NUREG-2215. The evaluation result shows that the stress intensities applied on the canister under normal, off-normal, and accident conditions are below the allowable stress thresholds, thus confirming its structural integrity.

Effect of emergency core cooling system flow reduction on channel temperature during recirculation phase of large break loss-of-coolant accident at Wolsong unit 1

  • Yu, Seon Oh;Cho, Yong Jin;Kim, Sung Joong
    • Nuclear Engineering and Technology
    • /
    • v.49 no.5
    • /
    • pp.979-988
    • /
    • 2017
  • The feasibility of cooling in a pressurized heavy water reactor after a large break loss-of-coolant accident has been analyzed using Multidimensional Analysis of Reactor Safety-KINS Standard code during the recirculation phase. Through evaluation of sensitivity of the fuel channel temperature to various effective recirculation flow areas, it is determined that proper cooling of the fuel channels in the broken loop is feasible if the effective flow area remains above approximately 70% of the nominal flow area. When the flow area is reduced by more than approximately 25% of the nominal value, however, incipience of boiling is expected, after which the thermal integrity of the fuel channel can be threatened. In addition, if a dramatic reduction of the recirculation flow occurs, excursions and frequent fluctuations of temperature in the fuel channels are likely to be unavoidable, and thus damage to the fuel channels would be anticipated. To resolve this, emergency coolant supply through the newly installed external injection path can be used as one alternative means of cooling, enabling fuel channel integrity to be maintained and permanently preventing severe accident conditions. Thus, the external injection flow required to guarantee fuel channel coolability has been estimated.

DROP IMPACT ANALYSIS OF PLATE-TYPE FUEL ASSEMBLY IN RESEARCH REACTOR

  • Kim, Hyun-Jung;Yim, Jeong-Sik;Lee, Byung-Ho;Oh, Jae-Yong;Tahk, Young-Wook
    • Nuclear Engineering and Technology
    • /
    • v.46 no.4
    • /
    • pp.529-540
    • /
    • 2014
  • In this research, a drop impact analysis of a fuel assembly in a research reactor is carried out to determine whether the fuel plate integrity is maintained in a drop accident. A fuel assembly drop accident is classified based on where the accident occurs, i.e., inside or outside the reactor, since each occasion results in a different impact load on the fuel assembly. An analysis procedure suitable for each drop situation is systematically established. For an accident occurring outside the reactor, the direct impact of a fuel assembly on the pool bottom is analyzed using implicit and explicit approaches. The effects of the key parameters, such as the impact velocity and structural damping ratios, are also studied. For an accident occurring inside the reactor, the falling fuel assembly may first hit the fixing bar at the upper part of the standing fuel assembly. To confirm the fuel plate integrity, a fracture of the fixing bar should be investigated, since the fixing bar plays a role in protecting the fuel plate from the external impact force. Through such an analysis, the suitability of an impact analysis procedure associated with the drop situation in the research reactor is shown.

Sensitivity Analysis to Finite Element Analysis Program to Evaluate Structural Integrity of a Spent Nuclear Fuel Transport Cask Subjected to Extreme Impact Loads (극한 충격하중이 작용하는 사용후핵연료 운반용기의 구조 건전성을 평가하는 유한요소해석 프로그램에 대한 민감도 분석)

  • Jong-Sung Kim;Min-Sik Cha
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.18 no.2
    • /
    • pp.50-53
    • /
    • 2022
  • To investigate the validity of the finite element analysis program to assess structural integrity of a spent nuclear fuel transport cask subjected to extreme impact loads, structural integrity of the cask for the case of an aircraft engine collision is evaluated using three FE analysis programs: Autodyn, Speed and ABAQUS explicit version. As a result of all analyses, it is confirmed that no penetration occurred in the cask wall. Even though the different programs are used, it is identified that there are insignificant differences in the FE analysis variables such as von Mises effective stress and equivalent plastic strain among the programs.

Experimental Evaluation of the Thermal Integrity of a Large Capacity Pressurized Heavy Water Reactor Transport Cask

  • Bang, Kyoung-Sik;Yang, Yun-Young;Choi, Woo-Seok
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.20 no.3
    • /
    • pp.357-364
    • /
    • 2022
  • The safety of a KTC-360 transport cask, a large-capacity pressurized heavy-water reactor transport cask that transports CANDU spent nuclear fuel discharged from the reactor after burning in a pressurized heavy-water reactor, must be demonstrated under the normal transport and accident conditions specified under transport cask regulations. To confirm the thermal integrity of this cask under normal transport and accident conditions, high-temperature and fire tests were performed using a one-third slice model of an actual KTC-360 cask. The results revealed that the surface temperature of the cask was 62℃, indicating that such casks must be transported separately. The highest temperature of the CANDU spent nuclear fuel was predicted to be lower than the melting temperature of Zircaloy-4, which was the sheath material used. Therefore, if normal operating conditions are applied, the thermal integrity of a KTC-360 cask can be maintained under normal transport conditions. The fire test revealed that the maximum temperatures of the structural materials, stainless steel, and carbon steel were 446℃ lower than the permitted maximum temperatures, proving the thermal integrity of the cask under fire accident conditions.

Automatic Analysis of Gamma Ray Spectra for Surveillance of the Nuclear Fuel Integrity (핵연료 건전성 점검을 위한 감마선 스펙트럼의 자동 분석)

  • Cho, Joo-Hyun;Yu, Sung-Sik;Kim, Seong-Rae;Hah, Yung-Joon
    • Nuclear Engineering and Technology
    • /
    • v.26 no.4
    • /
    • pp.555-561
    • /
    • 1994
  • The program of performing a fast and automatic analysis of gamma ray spectra obtained by a Multi-Channel Analyzer (MCA) is developed for the surveillance of the nuclear fuel integrity. The integrity of the nuclear fuel is confirmed by the measurement of the radiation level of the reactor coolant through the real time monitoring and the periodic sampling analysis. In Yonggwang nuclear power plane 3 and 4, the Process Radiation Monitoring System (PRMS), which is a real time monitoring system, provides a measure of the fuel integrity. Currently, its spectrometer channel can identify only one radionuclide at a time since the signal processing unit of the spectrometer channel is a Single Channel Analyzer (SCA). To improve the PRMS, it is necessary to substitute the MCA for the SCA The program is operated in a real time mode and an on-demand mode, and automatically performed for all procedures. The test results by using the National Bureau of Standards (NBS) mixed standard source are in good agreement with those from Canberra System 100 which is a commercial MCA Consequently, the developed program seems to be employed for automatic monitoring of gamma rays in nuclear power plants.

  • PDF

DEVELOPMENT AND VALIDATION OF A NUCLEAR FUEL CYCLE ANALYSIS TOOL: A FUTURE CODE

  • Kim, S.K.;Ko, W.I.;Lee, Yoon Hee
    • Nuclear Engineering and Technology
    • /
    • v.45 no.5
    • /
    • pp.665-674
    • /
    • 2013
  • This paper presents the development and validation methods of the FUTURE (FUel cycle analysis Tool for nUcleaR Energy) code, which was developed for a dynamic material flow evaluation and economic analysis of the nuclear fuel cycle. This code enables an evaluation of a nuclear material flow and its economy for diverse nuclear fuel cycles based on a predictable scenario. The most notable virtue of this FUTURE code, which was developed using C# and MICROSOFT SQL DBMS, is that a program user can design a nuclear fuel cycle process easily using a standard process on the canvas screen through a drag-and-drop method. From the user's point of view, this code is very easy to use thanks to its high flexibility. In addition, the new code also enables the maintenance of data integrity by constructing a database environment of the results of the nuclear fuel cycle analyses.

Welding Parts and Integrity Test in a PWR Fuel Assembly (경수로용 원전연료집합체에서의 용접부위 및 건전성 시험)

  • 송기남;윤경호;강흥석
    • Proceedings of the KWS Conference
    • /
    • 2003.11a
    • /
    • pp.55-57
    • /
    • 2003
  • The fuel assemblies as the nuclear fuel for the pressurized water reactor(PWR) are loaded in the reactor core throughout the residence time of three to five years. The fuel assembly is manufactured using special welding processes and under strict quality assurance and control systems. In this paper welding parts, welding methods, and welding tests for the integrity of the PWR fuel assemblies are introduced.

  • PDF

Structural Integrity of PWR Fuel Assembly for Earthquake

  • Jhung, M.J.
    • Nuclear Engineering and Technology
    • /
    • v.30 no.3
    • /
    • pp.212-221
    • /
    • 1998
  • In the present study, a method for the dynamic analysis of a reactor core is developed. Peak responses for the motions induced from earthquake are obtained for a core model. The dynamic responses such as fuel assembly shear force, bending moment, axial force and displacement, and spacer grid impact loads are investigated. Prediction of fuel assembly stress during an earthquake requires development of a fuel assembly stress analysis model capable of interfacing with the models and results discussed in the dynamic analysis of a reactor core. This analysis uses beam characteristics which describe the overall fuel assembly response. The stress analysis method and its application for the case of an increased seismic level are also presented.

  • PDF

International Research Status on Spent Nuclear Fuel Structural Integrity Tests Considering Vibration and Shock Loads Under Normal Conditions of Transport (정상운반조건의 진동 및 충격하중을 고려한 사용후핵연료의 구조적 건전성 시험평가 해외연구현황)

  • Lim, JaeHoon;Cho, Sang Soon;Choi, Woo-seok
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.17 no.2
    • /
    • pp.167-181
    • /
    • 2019
  • Currently, the development of evaluation technology for vibration and shock load characteristics and spent nuclear fuel structural integrity under normal conditions of transport is being conducted in the Republic of Korea. This is the first such research conducted in the Republic of Korea and, thus, previous international studies need to be investigated and will be referred to in the ongoing project. Before 2000, several studies related to measurement of vibration and shock loads on spent nuclear fuel were conducted in the US. US national research institutes conducted uniaxial fuel assembly shaker tests, concrete block tests, and multi-axis fuel assembly tests between 2009 and 2016. In 2017, multi-modal transportation tests including road, sea, and rail transport were also performed by research institutes from the US, Spain and the Republic of Korea. Therefore, test preparation procedures, acceleration and strain measurement results, and finite-element and multi-body dynamics analysis were investigated. Based on the measured strain data, the preliminary conclusion was obtained that the measured strain was too small to cause damage to spent nuclear fuel rods. However, this conclusion is a preliminary conclusion that only reviews part of the results; a detailed review is being conducted in the US. The investigation of international studies on spent nuclear fuel structural integrity tests considering vibration and shock loads under normal conditions of transport in the US will be useful data for the project being conducted in the Republic of Korea.