• 제목/요약/키워드: nuclear fuel cycle

검색결과 1,101건 처리시간 0.037초

Two new relationships for slip velocity and characteristic velocity in a non-center rotating column

  • Torkaman, Rezvan;Heydari, Mehran;Cheshmeh, Javad Najafi;Heydari, Ali;Asadollahzadeh, Mehdi
    • Nuclear Engineering and Technology
    • /
    • 제54권8호
    • /
    • pp.2809-2818
    • /
    • 2022
  • In this investigation work, liquid-liquid extraction (L.L.E) through three distinctive frameworks have been examined for assurance of slip velocity (S.V), and characteristic velocity (C.V) in a non-center rotating column (N.C.R.C) with a wide extend of factors. Three double frameworks with distinctive interfacial tension comprising of toluene-water (high interfacial tension), n-butyl acetate-water (medium interfacial tension), and n-butanol-water (low interfacial tension) were investigated for tests. Two common relationships for the expectation of S.V and C.V, including phase stream rates, rotor speed, column geometry additionally physical properties, are displayed. The recommended relationships were compared with test information gotten from the writing and the display examination. Findings of this study, the present proposed correlations are more accurate than those previously reported.

Examination of Proliferation Resistance Assessment for Nuclear Fuel Cycles

  • Lee, Yoon-Hee;Lee, Kun-Jai
    • 한국방사성폐기물학회:학술대회논문집
    • /
    • 한국방사성폐기물학회 2009년도 학술논문요약집
    • /
    • pp.73-73
    • /
    • 2009
  • There are many factors to evaluate nuclear fuel cycle such as safety, public acceptance, economics, etc.. Transparency, proliferation, environment issues, public acceptance and safety are essential to expansion of nuclear industry and proliferation resistance is one of key constraints in the deployment of advanced nuclear energy systems. Proliferation resistance is being considered as one of the most important factors in assessing advanced and innovative nuclear systems. IAEA defmes proliferation resistance as characteristics of nuclear energy system that impedes the diversion or undeclared production of nuclear material [1]. Barriers to proliferation is consist of intrinsic and extrinsic barriers(institutional measures). Intrinsic barriers are characterized in material barriers and technical barriers in general. Material barriers is intrinsic, or inherent, qualities of materials that reduce the inherent desirability or attractiveness of the material as an explosive. Isotopic, chemical, radiological, mass and bulk, detectability barriers are considered as material barriers attributes [2]. Proliferation resistance is examined for several nuclear fuel cycles based on previous study which is focused on the intrinsic barriers [3-4]. Pyroprocessing and DUPIC are considered as reprocessing technologies in Korea and the PWR direct disposal is considered. Comparative assessments of the proliferation attributes and merits of different fuel cycle systems will be performed and the optimal back-end fuel cycle and strategy will be proposed.

  • PDF

핵주기 공정에서의 이온성 액체 활용 기술 개요 (Overview on Ionic Liquid Application Technologies for Back-end Fuel Cycle Processes)

  • 김기섭;박병흥
    • 융복합기술연구소 논문집
    • /
    • 제3권2호
    • /
    • pp.1-6
    • /
    • 2013
  • The ionic liquids are known to potential alternative solvents capable of replacing the commercial solvents in various processes including those in nuclear fuel cycle. As to the material, a number of studies have already reviewed the interesting results and addressed the spectroscopic as well as electrochemical behaviors of metal elements included in spent nuclear fuels. It has found that the important properties of metal ions in TBP dissolved ILs have led the development of alternative technologies to traditional solvent extraction processes. On the other hand, the electrochemical deposition of metal ions in ILs have been investigated for the application of the solvents to aqueous as well as to non-aqueous processes. In this work, a review on the application of ILs in nuclear fuel cycle is briefly presented to understand the notable researches on ILs focusing on aqueous processes.

  • PDF

다자간 원자력 협력: 요소와 현안 (Multilateral Nuclear Approaches (MNAs), Factors and Issues Lessons from IAEA Study to Regional Cooperation)

  • Hwang Yong-Soo
    • 한국방사성폐기물학회:학술대회논문집
    • /
    • 한국방사성폐기물학회 2005년도 춘계 학술대회
    • /
    • pp.56-66
    • /
    • 2005
  • In response to the increasing emphasis being placed on the importance of international cooperation as part of global efforts to cope with growing non proliferation, and security, concerns in the nuclear field, the Director General of the International Atomic Energy Agency (IAEA), Mohamed ElBaradei, appointed an international group of experts to consider possible multilateral approaches to the nuclear fuel cycle. The mandate of the Expert Group was three fold: ${\bullet}$ To identify and provide an analysis of issues and options relevant to multilateral approaches to the front and back ends of the nuclear fuel cycle; ${\bullet}$ To provide an overview of the policy, legal, security, economic, institutional and technological incentives and disincentives for cooperation in multilateral arrangements for the front and back ends of the nuclear fuel cycle; and ${\bullet}$ To provide a brief review of the historical and current experiences and analyses relating to multilateral fuel cycle arrangements relevant to the work of the Expert Group. The overall purpose was to assess MNAs in the framework of a double objective: strengthening the international nuclear non proliferation regime and making the peaceful uses of nuclear energy more economical and attractive. The Group identifies options for MNAs - options in terms of policy, institutional and legal factors - for those parts of the nuclear fuel cycle of greatest sensitivity from the point of view of proliferation risk. It also reflects the Groups deliberations on the corresponding benefits and disadvantages (pros and cons) of the various options and approaches. Although the Expert Group was able to agree to forward the resulting report to the Director General, it is important to note that the report does not reflect agreement by all of the experts on any of the options, nor a consensus assessment of their respective value. It is intended only to present options for MNAs, and to reflect on the range of considerations which could impact on the desirability and feasibility of those options.

  • PDF

Fuel Cycle Cost Analysis of Go-ri Nuclear Power Plant Unit I

  • Chang Hyun Chung;Chang Hyo Kim
    • Nuclear Engineering and Technology
    • /
    • 제7권4호
    • /
    • pp.295-310
    • /
    • 1975
  • 고리원자로의 핵연로비 추정을 위한 가격 모델을 수립하고 이를 기초로 MITCOST-II 전자계산 code를 써서 고리 발전소의 전수명에 걸친 핵연료주기비를 계산하였다. 사용후 연료를 재처리 하지 않는다는 간단한 핵주기를 가정하였는데 평균 단위 핵연료비는 7.332 mills/Kwhe으로 추정되었으며 이중 우라늄 원광비와 농축비가 85% 이상을 차지하고 있음을 알아내었다. 또한 원광가격과 농축가격의 변동 및 발전소 가동율의 변화에 따른 영향을 계산했으며 그 결과 핵연료비가 원광가격 변동에 매우 민감하게 변화한다는 사실도 알아내었다. 따라서 경제적으로 전력을 생산하기 위해서는 적기에 염가로 우라늄을 확보할 수 있도록 노력을 기울여 야 한다고 제안하였다.

  • PDF

REVIEW OF SUPERCRITICAL CO2 POWER CYCLE TECHNOLOGY AND CURRENT STATUS OF RESEARCH AND DEVELOPMENT

  • AHN, YOONHAN;BAE, SEONG JUN;KIM, MINSEOK;CHO, SEONG KUK;BAIK, SEUNGJOON;LEE, JEONG IK;CHA, JAE EUN
    • Nuclear Engineering and Technology
    • /
    • 제47권6호
    • /
    • pp.647-661
    • /
    • 2015
  • The supercritical $CO_2$ (S-$CO_2$) Brayton cycle has recently been gaining a lot of attention for application to next generation nuclear reactors. The advantages of the S-$CO_2$ cycle are high efficiency in the mild turbine inlet temperature region and a small physical footprint with a simple layout, compact turbomachinery, and heat exchangers. Several heat sources including nuclear, fossil fuel, waste heat, and renewable heat sources such as solar thermal or fuel cells are potential application areas of the S-$CO_2$ cycle. In this paper, the current development progress of the S-$CO_2$ cycle is introduced. Moreover, a quick comparison of various S-$CO_2$ layouts is presented in terms of cycle performance.

선진 핵연료주기 기술 개발을 위한 핵연료주기 분석 기술 (Nuclear Fuel Cycle Analysis Technology to Develop Advanced Nuclear Fuel Cycle)

  • 박병흥;고원일
    • 방사성폐기물학회지
    • /
    • 제9권4호
    • /
    • pp.219-230
    • /
    • 2011
  • 핵연료주기 분석 연구는 핵연료주기 단계에서 기술들을 분석하고 요건들을 도출하여 국가적 핵연료주기 정책 설정 및 추진을 체계적으로 수행하기 위한 연구이다. 시스템 분석 기술은 대상 시스템의 비교 분석 평가에 활용되며 핵연료주기를 대상으로 하는 경우 각 국가 또는 관심 범위에 따라 다양한 방법이 사용된다. 본 연구에서는 국내 선진 핵연료주기 개발을 위해 필요한 핵연료주기 분석 전략과 함께 이를 위해 사용될 수 있는 분석 기술들을 제시하였다. 핵연료주기 분석은 전략적으로 기술적 분석, 국내외 이해관계, 국가 에너지 프로그램과 연계되어야 한다. 이를 위해 다양한 핵연료주기를 비교하여 제시된 평가 지표에 따라 분석하는 연구는 트레이드 연구 방법을 적용하여 수행할 수 있다. 본 연구를 통한 조사 분석 결과 핵연료주기 분석 전략과 함께 방법적 측면에서 트레이드 연구가 선진 핵연료주기 도출에 활용될 수 있을 것으로 파악되었다. 트레이드 연구에 필수적인 평가지표를 선정하고 각 지표별 핵연료주기에 대한 정보를 얻기 위해서는 기술성숙도 분석 방법과 핵연료주기 시뮬레이터를 활용할 수 있을 것으로 제시하였다. 이들은 핵연료주기의 기술성, 경제성, 환경영향성 등을 비교 평가하여 기술개발을 위한 방향을 제시하고 체계적인 선진 핵연료주기 도출 및 실현에 기여할 것이다.

THE DEVELOPMENT OF A SAFETY ASSESSMENT APPROACH AND ITS IMPLICATION ON THE ADVANCED NUCLEAR FUEL CYCLE

  • Hwang, Yong-Soo;Kang, Chul-Hyung
    • Nuclear Engineering and Technology
    • /
    • 제42권1호
    • /
    • pp.37-46
    • /
    • 2010
  • The development of advanced nuclear fuel cycle(ANFC) technology is essential to meet the national mission for energy independence via a nuclear option in Korea. The action target is to develop environmentally friendly, cost-effective measures to reduce the burden of long term disposal. The proper scenarios regarding potential radionuclide release from a repository have been developed in this study based on the advanced korean Reference Disposal System(A-KRS). To predict safety for the various scenarios, a new assessment code based on the GoldSim software has also been developed. Deterministic analysis indicates an environmental benefit from the ANFC as long as the solid waster from the ANFC act as a proper barrier.

CORE DESIGN FOR HETEROGENEOUS THORIUM FUEL ASSEMBLIES FOR PWR (II) - THERMAL HYDRAULIC ANALYSIS AND SPENT FUEL CHARACTERISTICS

  • BAE KANG-MOK;HAN KYU-HYUN;KIM MYUNG-HYUN;CHANG SOON-HEUNG
    • Nuclear Engineering and Technology
    • /
    • 제37권4호
    • /
    • pp.363-374
    • /
    • 2005
  • A heterogeneous thorium-based Kyung Hee Thorium Fuel (KTF) assembly design was assessed for application in the APR-1400 to study the feasibility of using thorium fuel in a conventional pressurized water reactor (PWR). Thermal hydraulic safety was examined for the thorium-based APR-1400 core, focusing on the Departure from Nucleate Boiling Ratio (DNBR) and Large Break Loss of Coolant Accident (LBLOCA) analysis. To satisfy the minimum DNBR (MDNBR) safety limit condition, MDNBR>1.3, a new grid design was adopted, that enabled grids in the seed and blanket assemblies to have different loss coefficients to the coolant flow. The fuel radius of the blanket was enlarged to increase the mass flow rate in the seed channel. Under transient conditions, the MDNBR values for the Beginning of Cycle (BOC), Middle of Cycle (MOC), and End of Cycle (EOC) were 1.367, 1.465, and 1.554, respectively, despite the high power tilt across the seed and blanket. Anticipated transient for the DNBR analysis were simulated at conditions of $112\%$ over-power, $95\%$ flow rate, and $2^{\circ}C$ higher inlet temperature. The maximum peak cladding temperature (PCT) was 1,173K for the severe accident condition of the LBLOCA, while the limit condition was 1,477K. The proliferation resistance potential of the thorium-based core was found to be much higher than that of the conventional $UO_2$ fuel core, $25\%$ larger in Bare Critical Mass (BCM), $60\%$ larger in Spontaneous Neutron Source (SNS), and $155\%$ larger in Thermal Generation (TG) rate; however, the radio-toxicity of the spent fuel was higher than that of $UO_2$ fuel, making it more environmentally unfriendly due to its high burnup rate.