• 제목/요약/키워드: nuclear factor-${\kappa}B$ P65

검색결과 203건 처리시간 0.031초

Lipopolysaccharide로 자극된 RAW 264.7 세포와 마우스 귀부종 모델에 대한 참치 심장 Dichloromethane 분획물의 항염증 효과 (Anti-Inflammatory Activity of Dichloromethane Fraction from Katsuwonus pelamis Heart in LPS-Induced RAW 264.7 Cells and Mouse Ear Edema)

  • 김민지;배난영;최현덕;김꽃봉우리;박선희;성낙윤;변의홍;남희섭;안동현
    • 한국미생물·생명공학회지
    • /
    • 제45권2호
    • /
    • pp.101-109
    • /
    • 2017
  • 본 실험에서는 참치 심장 70% ethanol 추출물을 dichloromethane으로 분획한 후 항염증 효과를 확인하기 위해 RAW 264.7 세포에 LPS로 염증을 유도시켜 염증 매개성 물질인 NO와 pro-inflammatory cytokine의 분비량의 변화를 확인하였다. 그 결과, 참치 심장 dichloromethane 분획물을 처리하였을 때, 농도 의존적으로 NO의 생성량을 감소시키는 것을 확인하였으며, 특히, $100{\mu}g/ml$에서 가장 높은 억제효과를 나타내었다. 따라서 dichloromethane 분획물의 억제 활성이 세포사멸에 의한 감소인지 알아보기 위해서 MTT assay를 하였을 때, 세포 생존율이 dichloromethane 분획물을 PBS 처리군과 비교하였을 때 유의적인 차이가 나타나지 않음을 확인하였고, 이를 통해 dichloromethane 분획물이 NO 및 전염증성 cytokine의 분비를 효과적으로 억제할 수 있는 물질임을 확인할 수 있었다. Dichloromethane 분획물을 처리하였을 때, 염증 관련 단백질 발현 정도를 western blot을 통해 확인한 결과, LPS에 의해 발현이 증가된 $NF-{\kappa}B$, iNOS 및 COX-2는 분획물을 처리함으로써 농도 의존적으로 감소되는 것을 확인할 수 있었다. 또한 dichloromethane 분획물의 처리가 인산화된 MAPKs의 발현을 저해함을 확인하여 참치 심장 dichloromethane 분획물이 $NF-{\kappa}B$와 MAPKs의 발현을 억제시킴으로써 NO 및 pro-inflammatory cytokine의 분비량을 감소시킴을 확인할 수 있었다. 동물 모델에서는, dichloromethane 분획물을 처리하였을 때 croton oil에 의한 귀 부종이 농도 의존적으로 감소함을 확인하였고, 특히, $250mg/kg{\cdot}body\;weight$ 농도로 투여시 시판 항염증제인 predinisolone을 $50mg/kg{\cdot}body\;weight$ 농도로 투여한 그룹과 유사한 효과를 나타내었다. 조직학적 변화를 확인한 결과에서는, 진피와 경피의 두께가 감소하였으며 진피내 mast cell 침윤이 감소되는 것을 확인할 수 있었다. 따라서 참치심장 dichloromethane 분획물이 효과적인 염증 예방 및 부종 완화를 위한 치료제로서 활용 가능성을 확인하였다.

NF-κB 신호경로에서 CLK3의 새로운 음성 조절자로서의 기능 (CLK3 is a Novel Negative Regulator of NF-κB Signaling)

  • 전별은;권찬성;이지은;우예린;김상우
    • 생명과학회지
    • /
    • 제32권11호
    • /
    • pp.833-840
    • /
    • 2022
  • 만성 염증은 종양의 발생 및 진행과 밀접하게 연관되어 있다. 핵인자 kappa B (NF-κB)는 5개의 전사인자로 구성되며 염증 반응에 필수적인 역할을 한다. 다양한 암에서 NF-κB의 조절장애가 보고되고 있으며 NF-κB 조절이 암 치료에 있어 핵심 표적이 된다. 본 연구에서는 CDC Like Kinase 3 (CLK3)를 NF-κB 신호전달 경로를 조절하는 새로운 키네이스임을 확인하였다. 우리는 CLK3가 정규 및 비정규 NF-κB 신호전달경로를 억제하는 것을 밝혔다. CLK3 과발현 또는 knock-down 세포주를 이용한 루시퍼레이즈 분석 결과, 이 키네이스는 TNFα와 PMA가 유도하는 정규 NF-κB 신호전달경로 활성을 억제하였다. 또한 CLK3 과발현은 잘 알려진 비정규 NF-κB 신호경로 유도제인 NF-κB-inducing kinase (NIK) 또는 CD40에 의한 NF-κB 활성을 저해하였다. 추가적으로 CLK3의 NF-κB 신호전달 저해기전을 설명하고자 TNFα 처리 후 웨스턴 블롯 분석으로 이 키네이스 영향권 내에 있는 NF-κB 신호경로 분자들을 식별하였다. 그 결과 CLK3가 TAK1, IKKα/α, p65, IκBα 및 ERK1/2-MAPK의 인산화/활성화를 저해하여 TNFα 처리로 유도된 NF-κB 및 MAPK 신호경로를 모두 억제함을 밝혔다. 앞으로의 연구는 CLK3가 정규 및 비정규 NF-κB 경로를 억제하는 기작을 밝히는데 초점을 맞출 것이다. 위 연구 결과들을 토대로 CLK3가 NF-κB 신호전달경로의 새로운 음성 조절자로써 기능함을 제시하였다.

Inhibitory activity of gintonin on inflammation in human IL-1β-stimulated fibroblast-like synoviocytes and collagen-induced arthritis in mice

  • Kim, Mijin;Sur, Bongjun;Villa, Thea;Nah, Seung Yeol;Oh, Seikwan
    • Journal of Ginseng Research
    • /
    • 제45권4호
    • /
    • pp.510-518
    • /
    • 2021
  • Background: Gintonin is a newly derived glycolipoprotein from the roots of ginseng. The purpose of this study is to investigate the anti-arthritic efficacy of Gintonin on various proteases and inflammatory mediators that have an important role in arthritis. Methods: Fibroblast-like synoviocytes (FLS) were treated with Gintonin and stimulated with interleukin (IL)-1β 1 hour later. The antioxidant effect of Gintonin was measured using MitoSOX and H2DCFDA experiments. The anti-arthritic efficacy of Gintonin was examined by analyzing the expression levels of inflammatory mediators using RT-PCR, western blot, and ELISA. The phosphorylation of mitogen-activated protein kinase (MAPK) pathways and translocation of nuclear factor kappa B (NF-κB)/p65 into the nucleus were also analyzed using western blot, ELISA, and immunocytochemistry. Collagen-induced arthritis (CIA) mice model was used. Mice were orally administered with Gintonin (25, 50, and 100 mg/kg) every 2 days for 45 days. The body weight, arthritis score, squeaking score, and paw volume were measured as the behavioral parameters. After sacrifice, H&E and safranin-O staining were performed for histological analysis. Results: Gintonin significantly inhibited the expression of inflammatory intermediates. Gintonin prevented NF-κB/p65 from moving into the nucleus through the JNK and ERK MAPK phosphorylation in FLS cells. Moreover, Gintonin suppressed the symptoms of arthritis in the CIA mice model. Conclusion: As a result, the antioxidant and anti-inflammatory effects of Gintonin were demonstrated, and ultimately the anti-arthritic effect was proved. Collectively, Gintonin has a great potential as a therapeutic agent for arthritis treatment.

Formosanin C attenuates lipopolysaccharide-induced inflammation through nuclear factor-κB inhibition in macrophages

  • Yin, Limin;Shi, Chaohong;Zhang, Zhongchen;Wang, Wensheng;Li, Ming
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제25권5호
    • /
    • pp.395-401
    • /
    • 2021
  • Extended inflammation and cytokine production pathogenically contribute to a number of inflammatory disorders. Formosanin C (FC) is the major diosgenin saponin found in herb Paris formosana Hayata (Liliaceae), which has been shown to exert anti-cancer and immunomodulatory functions. In this study, we aimed to investigate anti-inflammatory activity of FC and the underlying molecular mechanism. RAW264.7 macrophages were stimulated with lipopolysaccharide (LPS) or pretreated with FC prior to being stimulated with LPS. Thereafter, the macrophages were subjected to analysis of the expression levels of pro-inflammatory mediators, including nitric oxide (NO), prostaglandin E2 (PGE), tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and IL-6, as well as two relevant enzymes, inducible nitric oxide synthase (iNOS), and cyclooxygenase-2 (COX-2). The analysis revealed that FC administration blunted LPS-induced production of NO and PGE in a dose-dependent manner, while the expression of iNOS and COX-2 at both mRNA and protein levels was inhibited in LPS-stimulated macrophages pre-treated with FC. Moreover, LPS stimulation upregulated mRNA expression and medium release of TNF-α, IL-1β, and IL-6, whereas this effect was blocked upon FC pre-administration. Mechanistic studies showed that inhibitory effects of FC on LPS-induced inflammation were associated with a downregulation of IκB kinase, IκB, and p65/NF-κB pathway. Taken together, these data suggest that FC possesses an inflammation-suppressing activity, thus being a potential agent for the treatment of inflammation-associated disorders.

Anti-inflammatory Effects of Various Mushrooms in LPS-stimulated RAW264.7 Cells

  • Seo, Kyung Hye;Park, Jeong-Yong;Noh, Hyung-Jun;Lee, Ji Yeon;Lee, Eun Young;Han, Jae-Gu;Kim, Jin Hyo;Cheong, Mi Sun
    • 한국자원식물학회지
    • /
    • 제31권5호
    • /
    • pp.478-488
    • /
    • 2018
  • Mushrooms have been widely cultivated and consumed as foods and herbal medicines owing to their various biological properties. However, few studies have evaluated the anti-inflammatory effects of mushrooms. Here, we investigated the effects of mushroom extracts (MEs) on lipopolysaccharide (LPS)-induced inflammation in macrophages (RAW264.7 cells). First, we extracted MEs with either water or ethanol. Using LPS-treated RAW264.7 cells, we measured cell proliferation and NO production. Gene expression of tumor necrosis $factor-{\alpha}$ ($TNF-{\alpha}$), interleukin (IL)-6 (IL-6), and $IL-1{\beta}$ was assessed by RT-PCR, and protein abundance of inducible NO synthase (iNOS) and cyclooxygenase-2 (COX-2) and phosphorylation of p65 were determined by immunoblotting. MEs prepared using both water and ethanol inhibited LPS-induced inflammation in RAW264.7 cells. Nitric oxide (NO) levels induced by LPS were reduced by treatment with MEs. Isaria japonica Yasuda water extracts and Umbilicaria esculenta (Miyoshi) Minks ethanol extracts significantly decreased the mRNA expression of inflammation-related cytokine genes including $TNF-{\alpha}$, IL-6, and $IL-1{\beta}$. Similarly, the protein abundance of iNOS and COX-2 was also decreased. The phosphorylation of p65, a subunit of nuclear $factor-{\kappa}B$ was at least partly suppressed by MEs. This study suggests that mushrooms could be included in the diet to prevent and treat macrophage-related chronic immune diseases.

상황버섯 균사체를 이용한 전통주의 추출물이 HepG2 세포의 염증관련 단백질 발현에 미치는 영향 (Effects of Traditional Wine by using Mycelium of Phellinus Iinteus on the Expression of Inflammation-Related Proteins in HepG2 Cells)

  • 이수진;한민호;이용태;허만규;정경태;정영기;최영현;최병태
    • 동의생리병리학회지
    • /
    • 제20권4호
    • /
    • pp.914-918
    • /
    • 2006
  • It was examined that the effect of fermented traditional wine made by using mycelium of Phellinus linteus on the expression of inflammation-related proteins in HepG2 cells. HepG2 cells were incubated with or without ertract of traditional wine (ETMP), then analyzed by microscopic observation, reverse transcription polymerase chain reaction (RT-PCR) and Western blot. The results of RT-PCR and Western blot analyses showed that the level of inducible nitric oxide synthase (iNOS), cyclooxygenase (COX)-2 and tumor necrosis factor $(TNF)-{\alpha}$ was induced by LPS, Dut the treatment of ETMP inhibited the expression of these proteins and its mRNAs. Besides, the results of Western blot analyses showed that the expression of nuclear $factor-{\kappa}Bp65$ and $inhibitory-{\kappa}B{\alpha}$ were also slightly affected by ETMP treatment. These results suggest that ETM P alleviate the expression of inflammation-related protein expressions and thus may be used as a functional alcoholic beverage.

Carnosic acid protects against acetaminophen-induced hepatotoxicity by potentiating Nrf2-mediated antioxidant capacity in mice

  • Guo, Qi;Shen, Zhiyang;Yu, Hongxia;Lu, Gaofeng;Yu, Yong;Liu, Xia;Zheng, Pengyuan
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제20권1호
    • /
    • pp.15-23
    • /
    • 2016
  • Acetaminophen (APAP) overdose is one of the most common causes of acute liver failure. The study aimed to investigate the protective effect of carnosic acid (CA) on APAP-induced acute hepatotoxicity and its underlying mechanism in mice. To induce hepatotoxicity, APAP solution (400 mg/kg) was administered into mice by intraperitoneal injection. Histological analysis revealed that CA treatment significantly ameliorated APAP-induced hepatic necrosis. The levels of both alanine aminotransferase (ALT) and aspartate transaminase (AST) in serum were reduced by CA treatment. Moreover, CA treatment significantly inhibited APAP-induced hepatocytes necrosis and lactate dehydrogenase (LDH) releasing. Western blot analysis showed that CA abrogated APAP-induced cleaved caspase-3, Bax and phosphorylated JNK protein expression. Further results showed that CA treatment markedly inhibited APAP-induced pro-inflammatory cytokines TNF-${\alpha}$, IL-$1{\beta}$, IL-6 and MCP-1 mRNA expression and the levels of phosphorylated $I{\kappa}B{\alpha}$ and p65 protein in the liver. In addition, CA treatment reduced APAP- induced hepatic malondialdehyde (MDA) contents and reactive oxygen species (ROS) accumulation. Conversely, hepatic glutathione (GSH) level was increased by administration of CA in APAP-treated mice. Mechanistically, CA facilitated Nrf2 translocation into nuclear through blocking the interaction between Nrf2 and Keap1, which, in turn, upregulated anti-oxidant genes mRNA expression. Taken together, our results indicate that CA facilitates Nrf2 nuclear translocation, causing induction of Nrf2-dependent genes, which contributes to protection from acetaminophen hepatotoxicity.

우슬의 파골세포 분화 억제와 골 흡수 억제효과 (Inhibitory Effects of Achyranthis Bidentatae Radix on Osteoclast Differentiation and Bone Resorption)

  • 김주호;기지예;안지영;박혜정;김현주;곽한복;오재민;김윤경
    • 대한본초학회지
    • /
    • 제25권1호
    • /
    • pp.65-74
    • /
    • 2010
  • Objectives : Achyranthis Bidentatae Radix (ABR) has been used for treating of many symptoms especially osteoporosis and rheumatoid arthritis. In this study, we determined the effects of water extract of ABR in RANKL (Receptor Activator for Nuclear Factor $\kappa$ B Ligand)-induced osteoclast differentiation culture system. Methods : We assayed mRNA expression levels of NFATc1, c-Fos, TRAP, OSCAR, $FcR{\gamma}$, DAP12 and GAPDH in bone marrow macrophages (BMMs) treated with ABR. The protein expression levels of NFATc1, c-Fos, MAPKs and $\beta$-actin in cell lysates treated with ABR were analysed by Western blotting. In addition we determined the effects of water extract of ABR on LPS-induced bone-loss mouse. Results : Water extract of ABR showed remarkable inhibition on RANKL-treated osteoclast differentiation without cytotoxicity. ABR down-regulated the induction of c-Fos and NFATc1 by RANKL. ABR suppressed phosphorylation of JNK, p38 and I-${\kappa}B$. ABR rescued bone erosion by LPS induction in vivo study. Conclusions : These results demonstrate that ABR may be a useful remedy for curing of bone-loss disease such as osteoporosis.

Ginsenoside Ro, an oleanolic saponin of Panax ginseng, exerts anti-inflammatory effect by direct inhibiting toll like receptor 4 signaling pathway

  • Xu, Hong-Lin;Chen, Guang-Hong;Wu, Yu-Ting;Xie, Ling-Peng;Tan, Zhang-Bin;Liu, Bin;Fan, Hui-Jie;Chen, Hong-Mei;Huang, Gui-Qiong;Liu, Min;Zhou, Ying-Chun
    • Journal of Ginseng Research
    • /
    • 제46권1호
    • /
    • pp.156-166
    • /
    • 2022
  • Background: Panax ginseng Meyer (P. ginseng), a herb distributed in Korea, China and Japan, exerts benefits on diverse inflammatory conditions. However, the underlying mechanism and active ingredients remains largely unclear. Herein, we aimed to explore the active ingredients of P. ginseng against inflammation and elucidate underlying mechanisms. Methods: Inflammation model was constructed by lipopolysaccharide (LPS) in C57BL/6 mice and RAW264.7 macrophages. Molecular docking, molecular dynamics, surface plasmon resonance imaging (SPRi) and immunofluorescence were utilized to predict active component. Results: P. ginseng significantly inhibited LPS-induced lung injury and the expression of proinflammatory factors, including TNF-α, IL-6 and IL-1β. Additionally, P. ginseng blocked fluorescencelabeled LPS (LPS488) binding to the membranes of RAW264.7 macrophages, the phosphorylation of nuclear factor-κB (NF-κB) and mitogen-activated protein kinases (MAPKs). Furthermore, molecular docking demonstrated that ginsenoside Ro (GRo) docked into the LPS binding site of toll like receptor 4 (TLR4)/myeloid differentiation factor 2 (MD2) complex. Molecular dynamic simulations showed that the MD2-GRo binding conformation was stable. SPRi demonstrated an excellent interaction between TLR4/ MD2 complex and GRo (KD value of 1.16 × 10-9 M). GRo significantly inhibited LPS488 binding to cell membranes. Further studies showed that GRo markedly suppressed LPS-triggered lung injury, the transcription and secretion levels of TNF-α, IL-6 and IL-1β. Moreover, the phosphorylation of NF-κB and MAPKs as well as the p65 subunit nuclear translocation were inhibited by GRo dose-dependently. Conclusion: Our results suggest that GRo exerts anti-inflammation actions by direct inhibition of TLR4 signaling pathway.

LPS로 유도된 RAW 264.7 Cell과 마우스 모델에 대한 넓패(Ishige sinicola) 에탄올 추출물의 항염증 효과 (Anti-inflammatory effects of Ishige sinicola ethanol extract in LPS-induced RAW 264.7 cell and mouse model)

  • 김지혜;김민지;김꽃봉우리;박선희;조광수;김고은;쉬 시아오통;이다혜;박가령;안동현
    • 한국식품저장유통학회지
    • /
    • 제24권8호
    • /
    • pp.1149-1157
    • /
    • 2017
  • 본 연구에서는 넓패 에탄올 추출물의 항염증 효과를 알아보기 위해 RAW 264.7 세포에 LPS로 유도된 염증 반응 in vitro 및 in vivo 실험을 실시하였다. RAW 264.7 세포에 LPS와 함께 세포를 배양하였다. 먼저 MTT assay 실험을 통해 넓패 에탄올 추출물이 모든 농도(0.1, 1, 10, 50, $100{\mu}g/mL$)에서 세포독성을 나타내지 않는 것을 학인 하였다. 또한 모든 농도에서 염증억제 효과를 살펴 본 결과, LPS 처리구는 iNOS, COX-2, NF-${\kappa}B$ 그리고 MAPKs의 발현양을 증가 시켰으나, 넓패 에탄올 추출물의 경우 염증 반응에 관여하는 전사인자인 NF-${\kappa}B$와 MAPKs의 활성을 억제함으로써 항염증 효과를 나타내었다. 마지막으로 넓패 에탄올 추출물의 mast cell의 피부 조직학적 변화를 알아본 결과, control의 경우 진피와 경피의 면적이 확장 되어있고, mast cell의 침윤이 정상 군에 비하여 현저하게 증가함을 알 수 있었다. 반면에 넓패 에탄올 추출물의 경우 대조군에 비해 진피와 경피의 두께가 줄었으며 mast cell의 침윤감소에 효과가 있는 것을 확인하였다. 따라서 모든 결과를 종합하였을 때 넓패 에탄올 추출물이 항염증 치료제 뿐만 아니라 더 나아가 항염증에 유용한 기능성 식품소재로써 가치가 높다고 사료된다.