• 제목/요약/키워드: nuclear factor-${\kappa}B$ P65

검색결과 203건 처리시간 0.032초

Consumption of Oxidized Soybean Oil Increased Intestinal Oxidative Stress and Affected Intestinal Immune Variables in Yellow-feathered Broilers

  • Liang, Fangfang;Jiang, Shouqun;Mo, Yi;Zhou, Guilian;Yang, Lin
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제28권8호
    • /
    • pp.1194-1201
    • /
    • 2015
  • This study investigated the effect of oxidized soybean oil in the diet of young chickens on growth performance and intestinal oxidative stress, and indices of intestinal immune function. Corn-soybean-based diets containing 2% mixtures of fresh and oxidized soybean oil provided 6 levels (0.15, 1.01, 3.14, 4.95, 7.05, and $8.97meqO_2/kg$) of peroxide value (POV) in the diets. Each dietary treatment, fed for 22 d, had 6 replicates, each containing 30 birds (n = 1,080). Increasing POV levels reduced average daily feed intake (ADFI) of the broilers during d 1 to 10, body weight and average daily gain at d 22 but did not affect overall ADFI. Concentrations of malondialdehyde (MDA) increased in plasma and jejunum as POV increased but total antioxidative capacity (T-AOC) declined in plasma and jejunum. Catalase (CAT) activity declined in plasma and jejunum as did plasma glutathione S-transferase (GST). Effects were apparent at POV exceeding $3.14meqO_2/kg$ for early ADFI and MDA in jejunum, and POV exceeding $1.01meqO_2/kg$ for CAT in plasma and jejunum, GST in plasma and T-AOC in jejunum. Relative jejunal abundance of nuclear factor kappa B ($NF-{\kappa}B$) P50 and $NF-{\kappa}B$ P65 increased as dietary POV increased. Increasing POV levels reduced the jejunal concentrations of secretory immunoglobulin A and cluster of differentiation (CD) 4 and CD8 molecules with differences from controls apparent at dietary POV of 3.14 to $4.95meqO_2/kg$. These findings indicated that growth performance, feed intake, and the local immune system of the small intestine were compromised by oxidative stress when young broilers were fed moderately oxidized soybean oil.

Anti-inflammatory Effects of Scrophularia Koraiensis Nakai via NF-κB and MAPK Signaling Pathways in LPS-induced Macrophages

  • Da-Yoon Lee;So-Yeon Han;Hye-Jeong Park;Seo-Yoon Park;Jun-Hwan Jeong;Yoon-Jae Kwon;Tae-Won Jang;Jae-Ho Park
    • 한국자원식물학회:학술대회논문집
    • /
    • 한국자원식물학회 2022년도 추계학술대회
    • /
    • pp.107-107
    • /
    • 2022
  • Scrophularia koraiensis Nakai is widely used to remedy fever, edema, and neuritis. S. koraiensis has harpagoside and angoroside C, these compounds have been reported to alleviate inflammation, rheumatic diseases, and analgesic stimulation. We evaluated the anti-inflammatory effects of the ethanol extract of S. koraiensis (SKE) in lipopolysaccharides (LPS)-induced macrophages. At cellular levels, SKE decreased the production of nitric oxide (NO), the expression of inducible nitric oxide synthase (iNOS), and cytokines (IL-1b, TNF-a, and IL-6) under the LPS stimulation. SKE inhibited the phosphorylation of nuclear transcription factor-kappa B (NF-κB) p65 and its inhibitor (IκB-α). In addition, SKE suppressed the phosphorylation of extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK), and p38 in the mitogen-activated protein kinase (MAPK) pathway. In conclusion, SKE could be considered a potential resource for attenuating inflammation response and it may be utilized in the material for cosmetics, food additives, and tea.

  • PDF

창상을 유발한 흰쥐에서 금은화(金銀花) 추출물의 치료 효과 (The Effect of Lonicera japonica Extract in Wound-induced Rats)

  • 원제훈;우창훈
    • 한방재활의학과학회지
    • /
    • 제30권1호
    • /
    • pp.47-61
    • /
    • 2020
  • Objectives This study is carried out to investigate the effects of Lonicera japonica in wound-induced rats. Methods Rats were divided into 5 groups; normal (Nor), control (Veh), positive comparison (PC), Lonicera japonica 100 mg/kg (LL), Lonicera japonica 200 mg/kg (LH), each n=8. Total polyphenol and flavonoid were quantified. 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2'-azino-bis(3 ethylbenzothiazoline-6-sulfonic acid) (ABTS) free radical scavenging activation were measured. Reactive oxygen species (ROS) was measured in serum. Antioxidant factors and inflammatory factors were measured in skin tissue, and also hydroxyproline content. Skin tissue was analyzed by Hematoxylin & Eosin and Masson's trichrome staining method. Results Total polyphenol and flavonoid were 32.86±0.14 mg/g and 67.17±0.57 mg/g. The IC50 values of DPPH and ABTS free radical scavenging activation were 26.69±1.50 ㎍/mL and 49.33±4.52 ㎍/mL. ROS was significantly lower in LL and LH groups. Nuclear factor-erythroid 2-related factor 2 (Nrf2) was significantly higher in LH group and higher in LL group but not significant. Superoxide dismutase 1 (SOD-1), catalase, and heme oxygenase 1 (HO-1) were significantly higher in LL and LH groups. Nuclear factor kappa-B p65 (NF-κBp65), phosphorylated iκBα (p-iκBα), cyclooxygenase 2 (COX-2), and tumor necrosis factor alpha (TNF-α) were significantly lower in LL and LH groups. Hydroxyproline was significantly higher in LL and LH groups. The histopathologic analysis showed that skin tissue had recovered further more in LL and LH groups than in Veh group. Conclusions These results suggest that Lonicera japonica has the anti-oxidant, anti-inflammatory and healing effects in wound-induced rats.

Innate Immune-Enhancing Effect of Pinus densiflora Pollen Extract via NF-κB Pathway Activation

  • Sehyeon Jang;San Kim;Se Jeong Kim;Jun Young Kim;Da Hye Gu;Bo Ram So;Jung A Ryu;Jeong Min Park;Sung Ran Yoon;Sung Keun Jung
    • Journal of Microbiology and Biotechnology
    • /
    • 제34권3호
    • /
    • pp.644-653
    • /
    • 2024
  • Considering the emergence of various infectious diseases, including the coronavirus disease 2019 (COVID-19), people's attention has shifted towards immune health. Consequently, immune-enhancing functional foods have been increasingly consumed. Hence, developing new immune-enhancing functional food products is needed. Pinus densiflora pollen can be collected from the male red pine tree, which is commonly found in Korea. P. densiflora pollen extract (PDE), obtained by water extraction, contained polyphenols (216.29 ± 0.22 mg GAE/100 g) and flavonoids (35.14 ± 0.04 mg CE/100 g). PDE significantly increased the production of nitric oxide (NO) and reactive oxygen species (ROS) but, did not exhibit cytotoxicity in RAW 264.7 cells. Western blot results indicated that PDE induced the expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase (COX)-2. PDE also significantly increased the mRNA and protein levels of cytokines and the phosphorylation of IKKα/β and p65, as well as the activation and degradation of IκBα. Additionally, western blot analysis of cytosolic and nuclear fractions and immunofluorescence assay confirmed that the translocation of p65 to the nucleus after PDE treatment. These results confirmed that PDE increases the production of cytokines, NO, and ROS by activating NF-κB. Therefore, PDE is a promising nutraceutical candidate for immune-enhancing functional foods.

열처리 사균체 엔테로코커스 패칼리스 EF-2001의 항염증 효과 (Anti-inflammatory Effect of Heat-Killed Enterococcus faecalis, EF-2001)

  • 최문석;장상진;채유리;이명헌;김완중;이와사키 마사히로;한권일;김완재;김택중
    • 생명과학회지
    • /
    • 제28권11호
    • /
    • pp.1361-1368
    • /
    • 2018
  • 염증은 인체에서 가장 흔히 나타나는 증상으로 조직이 손상되면 염증 반응이 발생하고 염증 부위에서 혈관 확장과 혈류가 증가하여 부종이 생긴다. Lipopolysaccharide (LPS)는 Toll-like receptor 4에 의해 인식되고 염증 반응을 일으킨다. 열로 사멸시킨 Enterococcus faecalis 사균체(EF-2001)는 면역 조절 및 예방 활동을 하는 것으로 사전 보고되었고, 항 종양 효과가 있다고 보고되었지만 염증에 미치는 영향에 대해서는 지금까지 연구되지 않았다. 본 연구에서는 LPS에 의한 대식세포 염증 반응에 대한 EF-2001의 효과에 대해 연구하였다. 연구결과에서 EF-2001은 LPS에 의해 유도된 산화 질소의 생성을 감소시켰다. 우리는 EF-2001의 세포 독성이 있는지 확인했으며, 산화 질소의 감소는 세포독성에 의한 것이 아님을 확인하였다. 또한 이러한 EF-2001의 항염증 효과에 대한 분자기전을 연구하였다. LPS에 의한 유도된 iNOS와 COX-2의 발현은 EF-2001에 의해 감소되었다. 더해진 분자기작 분석에서 EF-2001은 LPS로 유도된 ERK, JNK 및 p38 인산화를 농도 의존적으로 억제하였다. 더해진 실험에서 EF-2001은 Akt 인산화를 억제하고 $NF-{\kappa}B$ 억제제인 $I{\kappa}B$ 단백질 발현을 증가시켰다. 또한, EF-2001은 p65의 핵으로의 이동을 억제함을 알수 있었다. 따라서, 이러한 결과는 EF-2001이 항염증 효과를 가지며 염증 질환 치료에 유용 할 수 활용될 수 있음을 시사한다.

Anthocyanins from Hibiscus syriacus L. Attenuate LPS-Induced Inflammation by Inhibiting the TLR4-Mediated NF-κB Signaling Pathway

  • Karunarathne, Wisurumuni Arachchilage Hasitha Maduranga;Molagoda, Ilandarage Menu Neelaka;Lee, Kyoung Tae;Choi, Yung Hyun;Kang, Chang-Hee;Jeong, Jin-Woo;Kim, Gi-Young
    • 한국자원식물학회:학술대회논문집
    • /
    • 한국자원식물학회 2019년도 추계학술대회
    • /
    • pp.92-92
    • /
    • 2019
  • Excessive or chronic inflammation contributes to the pathogenesis of many inflammatory diseases such as sepsis, rheumatoid arthritis, and ulcerative colitis. Hibiscus syriacus L. has been used as a medicinal plant in many Asian countries, even though its anti-inflammatory activity has been unclear. Therefore, we investigated the anti-inflammatory effect of anthocyanin fractions from the H. syriacus L. varieties Pulsae (PS) on the lipopolysaccharide (LPS)-induced expression of proinflammatory mediators and cytokines in RAW264.7 macrophages. PS suppressed LPS-induced nitric oxide (NO) and prostaglandin $E_2$ ($PGE_2$) secretion concomitant with downregulation of inducible NO synthase (iNOS) and cyclooxygenase-2 (COX-2) expression. Furthermore, PS inhibited the production of proinflammatory cytokines such as tumor necrosis factor-alpha ($TNF-{\alpha}$), interleukin-6 (IL-6), and IL-12 in LPS-stimulated RAW264.7 macrophages. Further study showed that PS significantly decreased LPS-induced nuclear translocation of the nuclear $factor-{\kappa}B$ ($NF-{\kappa}B$) subunits, p65 and p50. Molecular docking data showed that many anthocyanins from PS fit into the hydrophobic pocket of MD2 and bound to Toll-like receptor 4 (TLR4), indicating that PS inhibits the TLR4-MD2-mediated inflammatory signaling pathway. Especially, apigenin-7-O-glucoside most powerfully bound to MD2 and TLR4 through LYS122, LYS122, and SER127 at a distance of $2.205{\AA}$, $3.098{\AA}$, and $2.844{\AA}$ and SER441 at a distance of $2.873{\AA}$ (docking score: -8.4) through hydrogen bonding, respectively. Additionally, PS inhibited LPS-induced TLR4 dimerization/expression on the cell surface, which consequently decreased MyD88 recruitment and IRAK4 phosphorylation. PS completely blocked LPS-mediated mortality in zebrafish larvae by diminishing the recruitment of neutrophil and macrophages accompanied by low levels of proinflammatory cytokines. Taken together, our results indicate that PS attenuates LPS-mediated inflammation in both in vitro and in vivo by blocking the TLR4/MD2-MyD88/IRAK4-$NF-{\kappa}B$ axis. Therefore, PS might be used as a novel modulatory candidate for effective treatment of LPS-mediated inflammatory diseases.

  • PDF

PMA에 의해 유도된 Egr-1, $NF{-\kappa}B$ 및 COX-2의 활성에 미치는 지금초 추출물의 영향 (Euphorbiae Humifusae Inhibits Egr-1, $NF{-\kappa}B$ and COX-2 Activity Stimulated by Phorbol 12-myristate-13-acetate)

  • 김태환;김성윤;박상은;김원일;박동일;김기영;김남득;홍상훈;최영현
    • 동의생리병리학회지
    • /
    • 제22권2호
    • /
    • pp.415-421
    • /
    • 2008
  • Pro-inflammatory mediators, such as prostaglandin $E_2$ (PGE2), nitric oxide (NO), and cyclooxygenases-2 (COX-2), play pivotal roles in normal as well as transformed cells. Previous studies have shown that Euphorbiae humifusae Wind exhibits anti-proliferative and antioxidant activities. However, the it's anti-inflammatory properties are unclear. In this study, we examine the effects of water extract of E. humifusae (WEEH) on the expression of COX-2 and the production of $PGE_2$ in human lymphatic U937 cells. Treatment of phorbol 12-myristate-13-acetate (PMA) significantly induced COX-2 expression and $PGE_2$ production in U937 cells. However, pretreatment WEEH markedly inhibited the PMA-induced COX-2 expression and $PGE_2$ production in a dose-dependent manner. Moreover, WEEH prevented the elevated early growth response gene-1 (Egr-1) expression and nuclear factor-kappaB ($NF{-\kappa}B\; p65$) nuclear translocation stimulated by PMA treatment. Taken together, the present data indicate that WEEH exhibits anti-inflammatory properties by suppressing the transcription of pro-inflammatory cytokine genes through the $NF{-\kappa}B$ and Egr-1 signaling pathway.

Anti-osteoarthritis Effects of the Combination of Boswellia serrata, Curcuma longa, and Terminalia chebula Extracts in Interleukin-1β-stimulated Human Articular Chondrocytes

  • Kim, Hae Lim;Min, Daeun;Lee, Dong-Ryung;Lee, Sung-Kwon;Choi, Bong-Keun;Yang, Seung Hwan
    • 동의생리병리학회지
    • /
    • 제36권2호
    • /
    • pp.79-87
    • /
    • 2022
  • In this study, extracts of Boswellia serrata gum resin, Curcuma longa rhizome, and Terminalia chebula fruit were combined in different ratios, and their anti-osteoarthritis effects were compared to determine which combination had the best synergistic effect. B. serrata, C. longa, and T. chebula extracts in a 2:1:2 ratio exhibited higher antioxidative activity in scavenging DPPH radicals than did the individual extracts alone or the other extract combinations. Additionally, the 2:1:2 combination significantly improved the levels of enzymatic antioxidants and antioxidant-related proteins. Moreover, this same combination ratio decreased the protein levels of matrix metalloproteinase (MMP) 3 and MMP13 in interleukin-1β-stimulated human articular chondrocytes (HCHs) and increased those of aggrecan and collagen type II alpha 1 chain (COL2A1). Analysis of the underlying mechanisms revealed that the 2:1:2 combination significantly inhibited the phosphorylation of nuclear factor kappa B (NF-κB) p65, extracellular regulated protein kinase (ERK), and p38 mitogen-activated protein kinase (MAPK). Therefore, the 2:1:2 combination of these three plant extracts has the best potential for use as an effective dietary supplement for improving joint health compared with the individual extracts and their other combination ratios.

Dehydrocostus lactone inhibits NFATc1 via regulation of IKK, JNK, and Nrf2, thereby attenuating osteoclastogenesis

  • Lee, Hye In;Lee, Gong-Rak;Lee, Jiae;Kim, Narae;Kwon, Minjeong;Kim, Hyun Jin;Kim, Nam Young;Park, Jin Ha;Jeong, Woojin
    • BMB Reports
    • /
    • 제53권4호
    • /
    • pp.218-222
    • /
    • 2020
  • Excessive and hyperactive osteoclast activity causes bone diseases such as osteoporosis and periodontitis. Thus, the regulation of osteoclast differentiation has clinical implications. We recently reported that dehydrocostus lactone (DL) inhibits osteoclast differentiation by regulating a nuclear factor of activated T-cells, cytoplasmic 1 (NFATc1), but the underlying mechanism remains to be elucidated. Here we demonstrated that DL inhibits NFATc1 by regulating nuclear factor-κB (NF-κB), activator protein-1 (AP-1), and nuclear factor-erythroid 2-related factor 2 (Nrf2). DL attenuated IκBα phosphorylation and p65 nuclear translocation as well as decreased the expression of NF-κB target genes and c-Fos. It also inhibited c-Jun N-terminal kinase (JNK) but not p38 or extracellular signal-regulated kinase. The reporter assay revealed that DL inhibits NF-κB and AP-1 activation. In addition, DL reduced reactive oxygen species either by scavenging them or by activating Nrf2. The DL inhibition of NFATc1 expression and osteoclast differentiation was less effective in Nrf2-deficient cells. Collectively, these results suggest that DL regulates NFATc1 by inhibiting NF-κB and AP-1 via down-regulation of IκB kinase and JNK as well as by activating Nrf2, and thereby attenuates osteoclast differentiation.

Antioxidative effects of Kimchi under different fermentation stage on radical-induced oxidative stress

  • Kim, Boh Kyung;Choi, Ji Myung;Kang, Soon Ah;Park, Kun Young;Cho, Eun Ju
    • Nutrition Research and Practice
    • /
    • 제8권6호
    • /
    • pp.638-643
    • /
    • 2014
  • BACKGROUND/OBJECTIVES: Kimchi is a traditional Korean fermented vegetable containing several ingredients. We investigated the protective activity of methanol extract of kimchi under different fermentation stages against oxidative damage. MATERIALS/METHODS: Fresh kimchi (Fresh), optimally ripened kimchi (OptR), and over ripened kimchi (OvR) were fermented until the pH reached pH 5.6, pH 4.3, and pH 3.8, respectively. The radical scavenging activity and protective activity from oxidative stress of kimchi during fermentation were investigated under in vitro and cellular systems using LLC-$PK_1$ cells. RESULTS: Kimchi exhibited strong radical scavenging activities against 1,1-diphenyl-2-picrylhydrazyl, nitric oxide, superoxide anion, and hydroxyl radical. In addition, the free radical generators led to loss of cell viability and elevated lipid peroxidation, while treatment with kimchi resulted in significantly increased cell viability and decreased lipid peroxidation. Furthermore, the protective effect against oxidative stress was related to regulation of cyclooxygenase-2, inducible nitric oxide synthase, nuclear factor-${\kappa}B$ p65, and $I{\kappa}B$ expression. In particular, OvR showed the strongest protective effect from cellular oxidative stress among other kimchi. CONCLUSION: The current study indicated that kimchi, particularly OptR and OvR, played a protective role against free radical-induced oxidative stress. These findings suggest that kimchi is a promising functional food with an antioxidative effect and fermentation of kimchi led to elevation of antioxidative activity.