DOI QR코드

DOI QR Code

Anti-inflammatory Effect of Heat-Killed Enterococcus faecalis, EF-2001

열처리 사균체 엔테로코커스 패칼리스 EF-2001의 항염증 효과

  • Choi, Moon-Suk (Division of Biological Science and Technology, Yonsei University) ;
  • Chang, Sang-Jin (Division of Biological Science and Technology, Yonsei University) ;
  • Chae, Yuri (Division of Biological Science and Technology, Yonsei University) ;
  • Lee, Myung-Hun (Division of Biological Science and Technology, Yonsei University) ;
  • Kim, Wan-Joong (Division of Biological Science and Technology, Yonsei University) ;
  • Iwasa, Masahiro (Division of Biological Science and Technology, Yonsei University) ;
  • Han, Kwon-Il (Division of Biological Science and Technology, Yonsei University) ;
  • Kim, Wan-Jae (Research & Development Center, Korea BeRM Co. Ltd.) ;
  • Kim, Tack-Joong (Division of Biological Science and Technology, Yonsei University)
  • 최문석 (연세대학교 생명과학기술학부) ;
  • 장상진 (연세대학교 생명과학기술학부) ;
  • 채유리 (연세대학교 생명과학기술학부) ;
  • 이명헌 (연세대학교 생명과학기술학부) ;
  • 김완중 (연세대학교 생명과학기술학부) ;
  • 이와사키 마사히로 (연세대학교 생명과학기술학부) ;
  • 한권일 (연세대학교 생명과학기술학부) ;
  • 김완재 (한국베름(주) 연구개발센터) ;
  • 김택중 (연세대학교 생명과학기술학부)
  • Received : 2018.09.09
  • Accepted : 2018.10.22
  • Published : 2018.11.30

Abstract

Inflammation is the most common condition in the human body. Tissue damage triggers inflammation, together with vasodilation and increased blood flow at the inflamed site, resulting in edema. Inflammatory responses are also triggered by lipopolysaccharide (LPS), a Toll-like receptor Enterococcus faecalis, a gram-positive organism, has been reported to possess immunomodulatory and preventive activities; however, its use may present risks of sepsis and other systemic infections. Heat-killed Enterococcus faecalis (EF-2001) has been reported to induce antitumor activity, but its effects on inflammation are not known. In the present study, we investigated the effect of EF-2001 on LPS-induced macrophage inflammatory responses. EF-2001 treatment reduced nitric oxide (NO) production, indicating suppression of inflammatory reactions. EF-2001 showed no cytotoxicity in macrophages. Further investigation of the anti-inflammatory mechanism of EF-2001 indicated that EF-2001 reduced the LPS-induced expression of inducible nitric oxide synthase and cyclooxygenase-2. EF-2001 also reduced f the LPS induction of several inflammatory molecules involved in the nuclear factor-${\kappa}B$ ($NF-{\kappa}B$) and mitogen-activated protein kinase pathways, including ERK, JNK, and p38 phosphorylation, in a concentration-dependent manner. Additionally, EF-2001 inhibited Akt phosphorylation and increased the expression of the inhibitory ${\kappa}B$ ($I{\kappa}B$) protein, an inhibitor of $NF-{\kappa}B$. EF-2001 also inhibited the nuclear translocation of p65. These results suggest that EF-2001 has anti-inflammatory properties and may be useful for treating inflammatory diseases.

염증은 인체에서 가장 흔히 나타나는 증상으로 조직이 손상되면 염증 반응이 발생하고 염증 부위에서 혈관 확장과 혈류가 증가하여 부종이 생긴다. Lipopolysaccharide (LPS)는 Toll-like receptor 4에 의해 인식되고 염증 반응을 일으킨다. 열로 사멸시킨 Enterococcus faecalis 사균체(EF-2001)는 면역 조절 및 예방 활동을 하는 것으로 사전 보고되었고, 항 종양 효과가 있다고 보고되었지만 염증에 미치는 영향에 대해서는 지금까지 연구되지 않았다. 본 연구에서는 LPS에 의한 대식세포 염증 반응에 대한 EF-2001의 효과에 대해 연구하였다. 연구결과에서 EF-2001은 LPS에 의해 유도된 산화 질소의 생성을 감소시켰다. 우리는 EF-2001의 세포 독성이 있는지 확인했으며, 산화 질소의 감소는 세포독성에 의한 것이 아님을 확인하였다. 또한 이러한 EF-2001의 항염증 효과에 대한 분자기전을 연구하였다. LPS에 의한 유도된 iNOS와 COX-2의 발현은 EF-2001에 의해 감소되었다. 더해진 분자기작 분석에서 EF-2001은 LPS로 유도된 ERK, JNK 및 p38 인산화를 농도 의존적으로 억제하였다. 더해진 실험에서 EF-2001은 Akt 인산화를 억제하고 $NF-{\kappa}B$ 억제제인 $I{\kappa}B$ 단백질 발현을 증가시켰다. 또한, EF-2001은 p65의 핵으로의 이동을 억제함을 알수 있었다. 따라서, 이러한 결과는 EF-2001이 항염증 효과를 가지며 염증 질환 치료에 유용 할 수 활용될 수 있음을 시사한다.

Keywords

SMGHBM_2018_v28n11_1361_f0001.png 이미지

Fig. 1. Effects of EF-2001 on nitric oxide in LPS activated RAW 264.7 cells.

SMGHBM_2018_v28n11_1361_f0002.png 이미지

Fig. 2 Effects of EF-2001 on cell viability in RAW 264.7 cells.

SMGHBM_2018_v28n11_1361_f0003.png 이미지

Fig. 3. Inhibition of LPS-induced iNOS and COX-2 expression by EF-2001.

SMGHBM_2018_v28n11_1361_f0004.png 이미지

Fig. 4. Effect of EF-2001 on the LPS-induced MAP kinase pathway in Raw 264.7 cells.

SMGHBM_2018_v28n11_1361_f0005.png 이미지

Fig. 5. Effect of EF-2001 on LPS-induced phosphorylation of Akt in Raw 264.7 cells.

SMGHBM_2018_v28n11_1361_f0006.png 이미지

Fig. 6. Effect of EF-2001 on LPS-induced phosphorylation of IκB in Raw 264.7 cells.

SMGHBM_2018_v28n11_1361_f0007.png 이미지

Fig. 7. Effect of EF-2001 on LPS-induced translocation of p65 in Raw 264.7 cells.

References

  1. Ambs, S., Hussain, S. P. and Harris, C. C. 1997. Interactive effects of nitric oxide and the p53 tumor suppressor gene in carcinogenesis and tumor progression. FASEB J. 11, 443-448. https://doi.org/10.1096/fasebj.11.6.9194524
  2. Bae, N. Y., Kim, M. J., Kim, K. B. W. R., Park, J. H., Park, S. H., Sung, N. Y., Byun, E. H. and Ahn, D. H. 2016. Anti-Inflammatory effect of Chondrus ocellatus Holmes ethanol extract on lipopolysaccharide-induced inflammatory responses in RAW 264.7 cells. J. Microbiol. Biotechnol. 44, 268-277.
  3. Carter, A. B., Knudtson, K. L., Monick, M. M. and Hunninghake, G. W. 1999. The p38 mitogen-activated protein kinase is required for NF-${\kappa}B$-dependent gene expression: the role of TATA-binding protein (TBP). J. Biol. Chem. 274, 30858-30863. https://doi.org/10.1074/jbc.274.43.30858
  4. Cheon, J. M., Kim, H. S., Choi, E. O., Kwon, D. H., Choi, Y. H., Kim, B. W. and Hwang, H. J. 2017. Anti-inflammatory Activities of an Ethanol Extract of Sargassum macrocarpum in Lipopolysaccharide (LPS)-stimulated RAW 264.7 Macrophages. J. Life Sci. 27, 1437-1444.
  5. Choi, E. J., Iwasa, M., Han, K. I., Kim, W. J., Tang, Y., Hwang, Y. J., Chae, J. R., Han, W. C., Shin, Y. S. and Kim, E. K. 2016. Heat-killed Enterococcus faecalis EF-2001 ameliorates atopic dermatitis in a murine model. Nutrients 8, 146. https://doi.org/10.3390/nu8030146
  6. Choi, E. J., Iwasa, M., Han, K. I., Kim, W. J., Tang, Y., Han, W. C., Kim, E. K. and Park, Z. Y. 2016. Effect of Enterococcus faecalis EF-2001 on experimentally induced atopic eczema in mice. Food Sci. Biotechnol. 25, 1087-1093. https://doi.org/10.1007/s10068-016-0175-7
  7. Duerksen-Hughes, P. J., Day, D. B., Laster, S. M., Zachariades, N. A., Aquino, L. and Gooding, L. R. 1992. Both tumor necrosis factor and nitric oxide participate in lysis of simian virus 40-transformed cells by activated macrophages. J. Immunol. 149, 2114-2122.
  8. Ghosh, S., May, M. J. and Kopp, E. B. 1998. NF-${\kappa}B$ and REL proteins: evolutionarily conserved mediators of immune responses. Annu. Rev. Immunol. 16, 225-260. https://doi.org/10.1146/annurev.immunol.16.1.225
  9. Fisher, K. and Phillips, C. 2009. The ecology, epidemiology and virulence of Enterococcus. Microbiology 155, 1749-1757. https://doi.org/10.1099/mic.0.026385-0
  10. Funk, C. D. 2001. Prostaglandins and leukotrienes: advances in eicosanoid biology. Science 294, 1871-1875. https://doi.org/10.1126/science.294.5548.1871
  11. Greenhough, A., Smartt, H. J., Moore, A. E., Roberts, H. R., Williams, A. C., Paraskeva, C. and Kaidi, A. 2009. The COX-2/PGE 2 pathway: key roles in the hallmarks of cancer and adaptation to the tumour microenvironment. Carcinogenesis 30, 377-386. https://doi.org/10.1093/carcin/bgp014
  12. Islam, S., Hassan, F., Tumurkhuu, G., Ito, H., Koide, N., Mori, I., Yoshida, T. and Yokochi, T. 2007. 5-Fluorouracil prevents lipopolysaccharide-induced nitric oxide production in RAW 264.7 macrophage cells by inhibiting Akt-dependent nuclear factor-${\kappa}B$ activation. Cancer Chemother. Pharmacol. 59, 227-233.
  13. Janicke, H., Taylor, P. M. and Bryant, C. E. 2003. Lipopolysaccharide and interferon gamma activate nuclear factor kappa B and induce cyclo-oxygenase-2 in equine vascular smooth muscle cells. Res. Vet. Sci. 75, 133-140. https://doi.org/10.1016/S0034-5288(03)00073-0
  14. Kim, S. J., Park, H. J., Shin, H. J., Kim, J. S., Ahn, H. J., Min, I. S. and Youn, H. S. 2011. The effects of phenethyl isothiocyanate on nuclear factor-${\kappa}B$ activation and cyclooxygenase-2 and inducible nitric oxide synthase expression induced by toll-like receptor agonists. J. Appl. Biol. Chem. 54, 279-283. https://doi.org/10.3839/jabc.2011.045
  15. Kim, S. Y., Jo, M. J., Hwangbo, M., Back, Y. D., Jeong, T. Y., Cho, I. J. and Jee, S. Y. 2013. Anti-inflammatory effect of Stevia rebaudiana as a result of NF-${\kappa}B$ and MAPK inhibition. J. Kor. Med. Opthalmol. Otolaryngol. Dermatol. 26, 54-64. https://doi.org/10.6114/jkood.2013.26.3.054
  16. Kwon, M. S., Mun, O. J., Bae, M. J., Lee, S. G., Kim, M., Lee, S. H., Yu, K. H., Kim, Y. Y. and Kong, C. S. 2015. Anti-inflammatory activity of ethanol extracts from Hizikia fusiformis fermented with lactic acid bacteria in LPS-stimulated RAW264.7 macrophages. Prev. Nutr. Food Sci. 44, 1450-1457.
  17. Lee, H. N., Lim, D. Y., Lim, S. S., Kim, J. D. and Yoon, J. H. 2011. Anti-inflammatory effect of ethanol extract from Eupatorium japonicum. Kor. J. Food Sci. Technol. 43, 65-71. https://doi.org/10.9721/KJFST.2011.43.1.065
  18. Lee, S. J. and Lim, K. T. 2009. Inhibitory effect of ZPDC glycoprotein on the expression of inflammation-related cytokines through p38 MAP kinase and JNK in lipopolysaccharide-stimulated RAW 264.7 cells. Inflamm. Res. 58, 184-191. https://doi.org/10.1007/s00011-008-8118-2
  19. Limtrakul, P., Yodkeeree, S., Pitchakarn, P. and Punfa, W. 2016. Anti-inflammatory effects of proanthocyanidin-rich red rice extract via suppression of MAPK, AP-1 and NF-${\kappa}B$ pathways in Raw 264.7 macrophages. Nutr. Res. Pract. 10, 251-258. https://doi.org/10.4162/nrp.2016.10.3.251
  20. Luo, Y., Liu, M., Yao, X., Xia, Y., Dai, Y., Chou, G. and Wang, Z. 2009. Total alkaloids from Radix linderae prevent the production of inflammatory mediators in lipopolysaccharide-stimulated RAW 264.7 cells by suppressing NF-${\kappa}B$ and MAPKs activation. Cytokine 46, 104-110. https://doi.org/10.1016/j.cyto.2008.12.017
  21. Murosaki, S., Yamamoto, Y., Ito, K., Inokuchi, T., Kusaka, H., Ikeda, H. and Yoshikai, Y. 1998. Heat-killed Lactobacillus plantarum L-137 suppresses naturally fed antigen-specific IgE production by stimulation of IL-12 production in mice. J. Allergy Clin. Immnol. 102, 57-64. https://doi.org/10.1016/S0091-6749(98)70055-7
  22. Oh, J. H., Kang, L. L., Ban, J. O., Kim, Y. H., Kim, K. H., Han, S. B. and Hong, J. T. 2009. Anti-inflammatory effect of 4-O-methylhonokiol, a novel compound isolated from Magnolia officinalis through inhibition of NF-${\kappa}B$. Chem. Biol. Interact. 180, 506-514. https://doi.org/10.1016/j.cbi.2009.03.014
  23. Ou, C. C., Lin, S. L., Tsai, J. J. and Lin, M. Y. 2011. Heat-killed lactic acid bacteria enhance immunomodulatory potential by skewing the immune response toward Th1 polarization. J. Food Sci. 76, 260-267. https://doi.org/10.1111/j.1750-3841.2011.02161.x
  24. Huang, X., Chen, L. Y., Doerner, A. M., Pan, W. W., Smith, L., Huang, S., Papadimos, T. J. and Pan, Z. K. 2009. An atypical protein kinase C (PKC zeta) plays a critical role in lipopolysaccharide-activated NF-kappa B in human peripheral blood monocytes and macrophages. J. Immunol. 182, 5810-5815. https://doi.org/10.4049/jimmunol.0804073
  25. Qiaowen, X. and Carl, N. 1994. The high-output nitric oxide pathway: role and regulation. J. Leukocyte Biol. 56, 576-582. https://doi.org/10.1002/jlb.56.5.576
  26. Reddy, D. B. and Reddanna, P. 2009. Chebulagic acid (CA) attenuates LPS-induced inflammation by suppressing NF-kB and MAPK activation in RAW 264.7 macrophages. Biochem. Biophys. Res. Commun. 381, 112-117. https://doi.org/10.1016/j.bbrc.2009.02.022
  27. Satonaka, K., Ohashi, K., Nohmi, T., Yamamoto, T., Abe, S., Uchida, K. and Yamaguchi, H. 1996. Prophylactic effect of Enterococcus faecalis FK-23 preparation on experimental candidiasis in mice. Microbiol. Immunol. 40, 217-222. https://doi.org/10.1111/j.1348-0421.1996.tb03337.x
  28. Suresh Babu, C. V., Babar, S. M. E., Song, E. J., Oh, E. and Yoo, Y. S. 2008. Kinetic analysis of the MAPK and PI3K/Akt signaling pathways. Mol. Cell. 25, 397-406.
  29. Takeda, K. and Akira, S. 2004. TLR signaling pathways. Semin. Immnol. 16, 3-9. https://doi.org/10.1016/j.smim.2003.10.003
  30. Tamir, S. and Tannenbaum, S. R. 1996. The role of nitric oxide ($NO{\cdot}$) in the carcinogenic process. BBA Rev. Cancer 1288, F31-F36.
  31. Yanagisawa, T., Gu, Y. H., Tsuchihashi, E., Umekawa, M., Yamamoto, H., Iwasa, T. and Suzuki, I. 2000. Analgesic and anti-neoplastic effects of the immunization-active fraction of Enterococcus faecalis 2001. J. Orient. Med. 5, 97-102.