• Title/Summary/Keyword: nuclear factor 1-C

Search Result 467, Processing Time 0.034 seconds

PDTC Inhibits $TNF-{\alpha}-Induced$ Apoptosis in MC3T3E1 Cells

  • Chae, Han-Jung;Bae, Jee-Hyeon;Chae, Soo-Wan
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.7 no.4
    • /
    • pp.199-205
    • /
    • 2003
  • Osteoblasts are affected by TNF-${\alpha}$ overproduction by immune cells during inflammation. It has been suggested that functional $NF-{\kappa}B$ sites are involved in TNF-${\alpha}$-induced bone resorption. Thus, we explored the effect of pyrrolidine dithiocarbamate (PDTC), which potently blocks the activation of nuclear factor $(NF-{\kappa}B)$, on the induction of TNF-${\alpha}$-induced activation of JNK/SAPK, AP-1, cytochrome c, caspase and apoptosis in MC3T3E1 osteoblasts. Pretreatment of the cells with PDTC blocked TNF-${\alpha}$-induced $NF-{\kappa}B$ activation. TNF-${\alpha}$-induced activation of AP-1, another nuclear transcription factor, was suppressed by PDTC. The activation of c-Jun N-terminal kinase, implicated in the regulation of AP-1, was also down regulated by PDTC. TNF-${\alpha}$-induced apoptosis, release of cytochrome c and subsequent activation of caspase-3 were abolished by PDTC. TNF-${\alpha}$-induced apoptosis was partially blocked by Ac-DEVD-CHO, a caspase-3 inhibitor, suggesting that caspase-3 is involved in TNF-${\alpha}$-mediated signaling through $NF-{\kappa}B$ in MC3T3E1 osteoblasts. Thus, these results demonstrate that PDTC, has an inhibitory effect on TNF-${\alpha}$-mediated activation of JNK/SAPK, AP-1, cytochrome c release and subsequent caspase-3, leading to the inhibition of apoptosis. Our study may contribute to the treatment of TNF-${\alpha}$-associated immune and inflammatory diseases such as rheumatoid arthritis and periodontal diseases.

Anti-inflammatory Effects of Kiyomi (Citrus unshiu × C. sinensis) Leaf Ethanol Extract Via the Regulation of NF-𝜅B and MAPKs in LPS Induced RAW 264.7 Cells (청견 잎 에탄올 추출물의 NF-𝜅B와 MAPK 조절을 통한 항염증 효과)

  • Chung-Mu Park;Hyun-Seo Yoon
    • Journal of The Korean Society of Integrative Medicine
    • /
    • v.11 no.3
    • /
    • pp.159-169
    • /
    • 2023
  • Purpose : Though other Citrus spp. have reported their anti-inflammatory and antioxidative activities in previous studies, the biological activity of Kiyomi (Citrus unshiu × C. sinensis) has not been reported yet. Therefore, this study attempted to analyze the anti-inflammatory mechanisms of Kiyomi leaf ethanol extract (KLEE) in lipopolysaccharide (LPS) stimulated RAW 264.7 cells. Methods : The cytotoxic effect of KLEE in RAW 264.7 cells was determined by WST-1 assay. Bacterial endotoxin, the concentration of nitric oxide (NO) was analyzed by the Griess reaction. In addition, Western blot analysis was applied to measure the protein expression level of inducible NO synthase (iNOS). The phosphorylated status of the critical inflammatory transcription factor, nuclear factor (NF)-𝜅B, and its upstream signaling molecules, phosphoinositide 3-kinase (PI3K)/Akt as well as mitogen-activated protein kinases (MAPKs), were also measured by Western blot analysis. Results : KLEE was not cytotoxic up to a concentration of 200 ㎍/㎖, and protein expression levels of iNOS and cyclooxygenase (COX)-2, enzymes that counteract NO and prostaglandin (PG) E2 production, were inhibited by KLEE treatment. The phosphorylated status of PI3K/Akt as well as MAPKs including extracellular regulated kinase (ERK), c-jun NH2kinase (JNK), and p38, were significantly attenuated by KLEE treatment in LPS stimulated RAW 264.7 cells. Moreover, one of phase II enzymes, heme oxygenase (HO)-1 which has known for its anti-inflammatory capacity, was strongly induced by KLEE treatment. Conclusion : Consequently, KLEE treatment significantly attenuated the production of NO as well as the expression levels of iNOS and COX-2 in LPS-stimulated RAW 264.7 cells. The inflammatory transcription factor, NF-𝜅B, as well as its upstream signaling molecules, PI3K/Akt and MAPKs, were also diminished by KLEE treatment with statistical significance in LPS-stimulated RAW 264.7 cells. These results suggest that KLEE might be a promising candidate for the attenuation of inflammatory disorders.

Synergistic Effect of Natural Killer Cells and Bee Venom on Inhibition of NCI-H157 Cell Growth

  • Sung, Hee Jin;Song, Ho Sueb
    • Journal of Acupuncture Research
    • /
    • v.33 no.1
    • /
    • pp.47-56
    • /
    • 2016
  • Objectives : This study examined the effects of Bee venom on apoptosis in NCI-H157 human lung cancer cells and for promoting the apoptosis effects of Natural killer cell. Methods : Bee venom and Natural killer-92 cells were cultured either separately from or together with NCI-H157 cells for 24 hours. To figure out whether Bee venom enhances the cytotoxic effect of Natural Killer-92 cells, a cell viability assay was conducted. To observe the changes in Death receptors, apoptotic regulatory proteins and Nuclear $Factor-{\kappa}B$, western blot analysis was conducted. To observe the effect of Bee venom through an extrinsic mechanism, a transfection assay was conducted. Results : 1. Natural killer-92 cells and Bee venom significantly inhibited the growth of NCI-H157 cells and co-culture had more inhibitory effect than the separate culture. 2. Expressions of Fas, DR3, DR6, Bax, caspase-3, caspase-8, cleaved caspase-3, cleaved caspase-8 were increased, and expressions of Bcl-2 and cIAP were decreased. More efficacy was observed in co-culture than in separate culture. 3. Nuclear $Factor-{\kappa}B$ activation was clearly decreased. And co-culture showed much less activation than separate culture. 4. As a result of treatment for DR-siRNA, the reduced cell viability of NCI-H157 cells and the activity of Nuclear $Factor-{\kappa}B$ were increased. With this, it can be seen that Bee venom and Natural killer-92 cells have an effect on the cancer cells through the extrinsic mechanism. Conclusion : Bee venom is effective in inhibiting the growth of human lung cancer cells. Furthermore Bee venom effectively enhances the functions of Natural killer cells.

The Effects of Bangpungtongsungsan Extract to the Skin Damage on Mice Model after Atopic Dermatitis Elicitation (방풍통성산(防風通聖散)이 아토피 피부염을 유발한 동물모델의 피부 손상에 미치는 영향)

  • Son, Jung-Min;Hong, Seung-Ug
    • The Journal of Korean Medicine Ophthalmology and Otolaryngology and Dermatology
    • /
    • v.20 no.1 s.32
    • /
    • pp.99-114
    • /
    • 2007
  • Objectives : Atopic dermatitis has a close relationship with damage of skin barrier function. To investigate the effects of Bangpungtongsungsan(BT) extract to the skin damage on mice model after atopic dermatitis elicitation, this study was done through forcing injury to mice's skin. Methods : The BALB/c mice were distributed into three groups: control(CON) group, atopic dermatitis(AD)-elicited group, Bangpungtongsungsan(BT)-treated group. AD-elicited and BT-treated group were caused AD according to the method of Christophers E., Mrowietz and Minehiro. The BT extract was administered for 48 hours to BT-treated group. We observed changes of external dermal formation, eosinophils in vasculature, lipid formation in stratum corneum, distribution of ceramide, distribution of capillary, $I{\kappa}B$ kinase(IKK) and induce nitric oxide synthase(iNOS) mRNA expression. We used the statistical methods of student t-test(p<0.05). Results : After dispensing BT extract into the AD-elicited group, the number of eosinophil as an atopic index in mice noticeably decreased and dermal injury decreased. Also the decrease of hyperplasia, degranulated mast cells, angiogenesis and substance P were shown. The lipid lamellae, lipid protect formation, were repaired and the distribution of ceramide which inhibit protein kinase C(PKC) activation increased, and the PKC caused inhibition of nuclear $factor(NF)-{\kappa}B$ activation. As a result of inhibition of $NF-{\kappa}B$ activation, iNOS production were inhibited and apoptotic cell were increased. Moreover the decrease of IKK and iNOS mRNA expression in BT-treated RAW 264.7 cell were noted. Conclusion : BT mitigated skin damage on mice model after atopic dermatitis elicitation through recovering skin barrier function and inhibiting nuclear $factor(NF)-{\kappa}B$ activation.

  • PDF

Inhibitory Effects of Yongbu-tang on Osteoclast Differentiation and Bone Resorption (용부탕의 파골세포 분화 억제와 골 흡수 억제효과)

  • Lee, Jeong Ju;Jo, So Hyun;Park, Min Cheol;Jo, Eun Heui
    • Journal of Acupuncture Research
    • /
    • v.32 no.3
    • /
    • pp.27-40
    • /
    • 2015
  • Objectives : This study was performed to evaluate the effects of water extract of Cervi Parvum Cornu(CPC), Aconiti Lateralis Radix Preparata(ALR), and Yongbu-tang(YBT) on suppression of the receptor activator of nuclear factor kappa-B ligand(RANKL)-induced osteoclast differentiation and bone resorption. Methods : The effects of CPC, ALR, YBT extracts on osteoclast differentiation were determined by culture of bone marrow macrophage(BMM). The mRNA expression levels of the nuclear factor of activated T-cells cytoplasmic 1(NFATc1), c-Fos and tartrate-resistant acid phosphatase(TRAP) in BMMs were analyzed by reverse transcriptase polymerase chain reaction(RT-PCR). Similarly, the protein expression levels of NFATc1, c-Fos, mitogen-activated protein kinase(MAPK)s and ${\beta}$-actin in cell lysates were measured by western blotting. In addition, effects of CPC, ALR and YBT extracts were determined by means of Lipopolysaccharide(LPS)-induced bone-loss with mice. Results : CPC, ALR and YBT extracts showed remarkable inhibition on RANKL-induced osteoclast differentiation without cytotoxicity. CPC and ALR extracts significantly reduced the protein expression level of NFATc1. YBT extract significantly reduced the mRNA expression levels of c-Fos, NFATc1 and the protein expression levels of c-Fos, NFATc1, AKT, p38, c-Jun N-terminal kinase(JNK). Further, YBT extract suppressed degradation of$ I-{\kappa}B$. And ALR extract significantly restored the bone erosion by LPS treatment in mice. Conclusions : YBT extract showed more remarkable inhibition on osteoclast differentiation than CPC and ALR extracts in vitro. ALR extract showed remarkable inhibition on bone resorption in vivo. Thus, YBT extract can be a useful treatment for bone-loss diseases such as osteoporosis.

Comparative Study of Autophagy in Oxaliplatin-Sensitive and Resistant SNU-C5 Colon Cancer Cells

  • Boo, Sun-Jin;Piao, Mei Jing;Kang, Kyoung Ah;Zhen, Ao Xuan;Fernando, Pincha Devage Sameera Madushan;Herath, Herath Mudiyanselage Udari Lakmini;Lee, Seung Joo;Song, Seung Eun;Hyun, Jin Won
    • Biomolecules & Therapeutics
    • /
    • v.30 no.5
    • /
    • pp.447-454
    • /
    • 2022
  • Few studies have evaluated the role of autophagy in the development of oxaliplatin (OXT) resistance in colon cancer cells. In this study, we compared the role of autophagy between SNU-C5 colon cancer cells and OXT-resistant SNU-C5 (SNU-C5/OXTR) cells. At the same concentration of OXT, the cytotoxicity of OXT or apoptosis was significantly reduced in SNU-C5/OXTR cells compared with that in SNU-C5 cells. Compared with SNU-C5 cells, SNU-C5/OXTR cells exhibited low levels of autophagy. The expression level of important autophagy proteins, such as autophagy-related protein 5 (Atg5), beclin-1, Atg7, microtubule-associated proteins 1A/1B light chain 3B I (LC3-I), and LC3-II, was significantly lower in SNU-C5/OXTR cells than that in SNU-C5 cells. The expression level of the autophagy-essential protein p62 was also lower in SNU-C5/OXTR cells than in SNU-C5 cells. In SNU-C5/OXTR cells, the production of intracellular reactive oxygen species (ROS) was significantly higher than that in SNU-C5 cells, and treatment with the ROS scavenger N-acetylcysteine restored the reduced autophagy levels. Furthermore, the expression of antioxidant-related nuclear factor erythroid 2-related factor 2 transcription factor, heme oxygenase-1, and Cu/Zn superoxide dismutase were also significantly increased in SNU-C5/OXTR cells. These findings suggest that autophagy is significantly reduced in SNU-C5/OXTR cells compared with SNU-C5 cells, which may be related to the production of ROS in OXT-resistant cells.

STRAIN RATE CHANGE FROM 0.04 TO 0.004%/S IN AN ENVIRONMENTAL FATIGUE TEST OF CF8M CAST STAINLESS STEEL

  • Jeong, Ill-Seok;Kim, Wan-Jae;Kim, Tae-Ryong;Jeon, Hyun-Ik
    • Nuclear Engineering and Technology
    • /
    • v.43 no.1
    • /
    • pp.83-88
    • /
    • 2011
  • To define the effect of strain rate variation from 0.04% to 0.004%/s on environmental fatigue of CF8M cast stainless steel, which is used as a primary piping material in nuclear power plants, low-cycle fatigue tests were conducted at operating pressure and temperature condition of a pressurized water reactor, 15 MPa and $315^{\circ}C$, respectively. A high-pressure and high-temperature autoclave and cylindrical solid fatigue specimens were used for the strain-controlled low-cycle environmental fatigue tests. It was observed that the fatigue life of CF8M stainless steel is shortened as the strain rate decreases. Due to the effect of test temperature, the fatigue data of NUREG-6909 appears a slightly shorter than that obtained by KEPRI at the same stress amplitude of $1{\times}10^3$ MPa. The environmental fatigue correction factor $F_{en}$'s calculated with inputs of the test data increases with high strain amplitude, while the $F_{en}$'s of NUREG-6909 remain constant regardless of strain amplitude.

Radioactive cDNA microarray in Neurospsychiatry (신경정신 의학분야의 방사성동위원소 표지 cDNA 마이크로어레이)

  • Choe, Jae-Gol;Shin, Kyung-Ho;Lee, Min-Soo;Kim, Meyoung-Kon
    • The Korean Journal of Nuclear Medicine
    • /
    • v.37 no.1
    • /
    • pp.43-52
    • /
    • 2003
  • Microarray technology allows the simultaneous analysis of gene expression patterns of thousands of genes, in a systematic fashion, under a similar set of experimental conditions, thus making the data highly comparable. In some cases arrays are used simply as a primary screen loading to downstream molecular characterization of individual gene candidates. In other cases, the goal of expression profiling is to begin to identify complex regulatory networks underlying developmental processes and disease states. Microarrays were originally used with ceil lines or other simple model systems. More recently, microarrays have been used in the analysis of more complex biological tissues including neural systems and the brain. The application of cDNA arrays in neuropsychiatry has lagged behind other fields for a number of reasons. These include a requirement for a large amount of input probe RNA In fluorescent-glass based array systems and the cellular complexity introduced by multicellular brain and neural tissues. An additional factor that impacts the general use of microarrays in neuropsychiatry is the lack of availability of sequenced clone sets from model systems. While human cDNA clones have been widely available, high qualify rat, mouse, and drosophilae, among others are just becoming widely available. A final factor in the application of cDNA microarrays in neuropsychiatry is cost of commercial arrays. As academic microarray facilitates become more commonplace custom made arrays will become more widely available at a lower cost allowing more widespread applications. in summary, microarray technology is rapidly having an impact on many areas of biomedical research. Radioisotope-nylon based microarrays offer alternatives that may in some cases be more sensitive, flexible, inexpensive, and universal as compared to other array formats, such as fluorescent-glass arrays. In some situations of limited RNA or exotic species, radioactive membrane microarrays may be the most practical experimental approach in studying psychiatric and neurodegenerative disorders, and other complex questions in the brain.

Panax ginseng exerts antidepressant-like effects by suppressing neuroinflammatory response and upregulating nuclear factor erythroid 2 related factor 2 signaling in the amygdala

  • Choi, Jong Hee;Lee, Min Jung;Jang, Minhee;Kim, Hak-Jae;Lee, Sanghyun;Lee, Sang Won;Kim, Young Ock;Cho, Ik-Hyun
    • Journal of Ginseng Research
    • /
    • v.42 no.1
    • /
    • pp.107-115
    • /
    • 2018
  • Background: Depression is one of the most commonly diagnosed neuropsychiatric diseases, but the underlying mechanism and medicine are not well-known. Although Panax ginseng has been reported to exert protective effects in various neurological studies, little information is available regarding its antidepressant effects. Methods: Here, we examined the antidepressant effect and underlying mechanism of P. ginseng extract (PGE) in a chronic restraint stress (CRS)-induced depression model in mice. Results: Oral administration of PGE for 14 d decreased immobility (depression-like behaviors) time in forced swim and tail suspended tests after CRS induction, which corresponded with attenuation of the levels of serum adrenocorticotropic hormone and corticosterone, as well as attenuated c-Fos expression in the amygdala. PGE enhanced messenger RNA expression level of brain-derived neurotrophic factor but ameliorated microglial activation and neuroinflammation (the level of messenger RNA and protein expression of cyclooxygenase-2 and inducible nitric oxide synthase) in the amygdala of mice after CRS induction. Interestingly, 14-d treatment with celecoxib, a selective cyclooxygenase-2 inhibitor, and $N_{\omega}$-nitro-L-arginine methyl ester hydrochloride, a selective inducible nitric oxide synthase inhibitor, attenuated depression-like behaviors after CRS induction. Additionally, PGE inhibited the upregulation of the nuclear factor erythroid 2 related factor 2 and heme oxygenase-1 pathways. Conclusion: Taken together, our findings suggest that PGE exerts antidepressant-like effect of CRS-induced depression by antineuroinflammatory and antioxidant (nuclear factor erythroid 2 related factor 2/heme oxygenase-1 activation) activities by inhibiting the hypothalamo-pituitary-adrenal axis mechanism. Further studies are needed to evaluate the potential of components of P. ginseng as an alternative treatment of depression, including clinical trial evaluation.

A Study on the Prediction Method of Carbonation Process for Concrete Structures of Nuclear Power Plant (원전 콘크리트 구조물의 중성화 진행 예측 기법에 관한 연구)

  • Koh, Kyoung-Tack;Kim, Do-Gyeum;Kim, Sung-Wook;Cho, Myung-Sung;Son, Young-Chul
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.6 no.1
    • /
    • pp.149-158
    • /
    • 2002
  • The carbonation process is affected by both the concrete material properties such as W/C ratio, types of cement and aggregates, admixture characteristics and the environmental factors such as $CO_2$ concentration, temperature, humidity. Based on results of preliminary study on carbonation, this study is to develop a carbonation prediction model by taking account of $CO_2$ concentration, temperature, humidity ad W/C ratio among major factor affecting the carbonation process. And to constitute a model formula which correspond to the mix design of the nuclear power plant, test coefficient that correspond to the design of the nuclear power plant is obtained based on the results of accelerated carbonation test. Also a field coefficient which is obtained based on results of the field examination is included to improve the conformity of the actual structures of nuclear power plant.