• Title/Summary/Keyword: nuclear equipment

Search Result 785, Processing Time 0.029 seconds

Diurnal and Seasonal Variations of the Radon Progeny Concentrations in the open Atmosphere and the Influence of Meteorological Parameters (대기중 라돈자핵종 농도의 일일 및 계절적 변화와 기상인자가 미치는 영향)

  • Lee, Dong-Myung;Kim, Chang-Kyu;Rho, Byung-Hwan;Lee, Seung-Chan;Kang, Hee-Dong
    • Journal of Radiation Protection and Research
    • /
    • v.25 no.4
    • /
    • pp.207-216
    • /
    • 2000
  • Continuous measurements of radon progeny concentrations in the open atmosphere and measurements of meteorological parameters were performed in Tajeon, using a continuous gross alpha/beta aerosol monitor and a weather measuring equipment between July 1999 and July 2000. These data were analyzed for half-hourly, daily, and seasonal variations. The distribution of daily averaged equilibrium equivalent radon concentration$(EEC_{Rn})$ had an arithmetic mean value of $11.3{\pm}5.86Bqm^{-3}$ with the coefficient of variation of about 50% and the geometric mean was $10.3Bqm^{-3}$. The $EEC_{Rn}$ varies between 0.83 and $43.3Bqm^{-3}$, depending on time of day and weather conditions. Half-hourly averaged data indicated a diurnal pattern with the outdoor $EEC_{Rn}$ reaching a maximum at sunrise and a minimum at sunset. The pattern of the seasonal variation of the $EEC_{Rn}$ in Taejon had a tendency of minimum concentration occurring in the summer(July) and maximum concentration occurring in the late autumn(November). But the seasonal variation of the $EEC_{Rn}$ is expect to vary greatly from place to place. The outdoor $EEC_{Rn}$ was highly dependent on the local climate features. Particularly the $EEC_{Rn}$an rapidly drops less than $5Bqm^{-3}$ in case of blowing heavily higher than wind speed of $6msec^{-1}$, reversely the days with more than $30Bqm^{-3}$ were at a calm weather condition with the wind speed of lower than $1msec^{-1}$.

  • PDF

Radioimmunoassay Reagent Survey and Evaluation (검사별 radioimmunoassay시약 조사 및 비교실험)

  • Kim, Ji-Na;An, Jae-seok;Jeon, Young-woo;Yoon, Sang-hyuk;Kim, Yoon-cheol
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.25 no.1
    • /
    • pp.34-40
    • /
    • 2021
  • Purpose If a new test is introduced or reagents are changed in the laboratory of a medical institution, the characteristics of the test should be analyzed according to the procedure and the assessment of reagents should be made. However, several necessary conditions must be met to perform all required comparative evaluations, first enough samples should be prepared for each test, and secondly, various reagents applicable to the comparative evaluations must be supplied. Even if enough comparative evaluations have been done, there is a limit to the fact that the data variation for the new reagent represents the overall patient data variation, The fact puts a burden on the laboratory to the change the reagent. Due to these various difficulties, reagent changes in the laboratory are limited. In order to introduce a competitive bid, the institute conducted a full investigation of Radioimmunoassay(RIA) reagents for each test and established the range of reagents available in the laboratory through comparative evaluations. We wanted to share this process. Materials and Methods There are 20 items of tests conducted in our laboratory except for consignment tests. For each test, RIA reagents that can be used were fully investigated with the reference to external quality control report. and the manuals for each reagent were obtained. Each reagent was checked for the manual to check the test method, Incubation time, sample volume needed for the test. After that, the primary selection was made according to whether it was available in this laboratory. The primary selected reagents were supplied with 2kits based on 100tests, and the data correlation test, sensitivity measurement, recovery rate measurement, and dilution test were conducted. The secondary selection was performed according to the results of the comparative evaluation. The reagents that passed the primary and secondary selections were submitted to the competitive bidding list. In the case of reagent is designated as a singular, we submitted a explanatory statement with the data obtained during the primary and secondary selection processes. Results Excluded from the primary selection was the case where TAT was expected to be delayed at the moment, and it was impossible to apply to our equipment due to the large volume of reagents used during the test. In the primary selection, there were five items which only one reagent was available.(squamous cell carcinoma Ag(SCC Ag), β-human chorionic gonadotropin(β-HCG), vitamin B12, folate, free testosterone), two reagents were available(CA19-9, CA125, CA72-4, ferritin, thyroglobulin antibody(TG Ab), microsomal antibody(Mic Ab), thyroid stimulating hormone-receptor-antibody(TSH-R-Ab), calcitonin), three reagents were available (triiodothyronine(T3), Tree T3, Free T4, TSH, intact parathyroid hormone(intact PTH)) and four reagents were available are carcinoembryonic antigen(CEA), TG. In the secondary selection, there were eight items which only one reagent was available.(ferritin, TG, CA19-9, SCC, β-HCG, vitaminB12, folate, free testosterone), two reagents were available(TG Ab, Mic Ab, TSH-R-Ab, CA125, CA72-4, intact PTH, calcitonin), three reagents were available(T3, Tree T3, Free T4, TSH, CEA). Reasons excluded from the secondary selection were the lack of reagent supply for comparative evaluations, the problems with data reproducibility, and the inability to accept data variations. The most problematic part of comparative evaluations was sample collection. It didn't matter if the number of samples requested was large and the capacity needed for the test was small. It was difficult to collect various concentration samples in the case of a small number of tests(100 cases per month or less), and it was difficult to conduct a recovery rate test in the case of a relatively large volume of samples required for a single test(more than 100 uL). In addition, the lack of dilution solution or standard zero material for sensitivity measurement or dilution tests was one of the problems. Conclusion Comparative evaluation for changing test reagents require appropriate preparation time to collect diverse and sufficient samples. In addition, setting the total sample volume and reagent volume range required for comparative evaluations, depending on the sample volume and reagent volume required for one test, will reduce the burden of sample collection and planning for each comparative evaluation.

Evaluation of Proper Image Acquisition Time by Change of Infusion dose in PET/CT (PET/CT 검사에서 주입선량의 변화에 따른 적정한 영상획득시간의 평가)

  • Kim, Chang Hyeon;Lee, Hyun Kuk;Song, Chi Ok;Lee, Gi Heun
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.18 no.2
    • /
    • pp.22-27
    • /
    • 2014
  • Purpose There is the recent PET/CT scan in tendency that use low dose to reduce patient's exposure along with development of equipments. We diminished $^{18}F$-FDG dose of patient to reduce patient's exposure after setting up GE Discovery 690 PET/CT scanner (GE Healthcare, Milwaukee, USA) establishment at this hospital in 2011. Accordingly, We evaluate acquisition time per proper bed by change of infusion dose to maintain quality of image of PET/CT scanner. Materials and Methods We inserted Air, Teflon, hot cylinder in NEMA NU2-1994 phantom and maintained radioactivity concentration based on the ratio 4:1 of hot cylinder and back ground activity and increased hot cylinder's concentration to 3, 4.3, 5.5, 6.7 MBq/kg, after acquisition image as increase acquisition time per bed to 30 seconds, 1 minute, 1 minute 30 seconds, 2 minute, 2 minutes 30 seconds, 3 minutes, 3 minutes 30 seconds, 4 minutes, 4 minutes 30 seconds, 5 minutes, 5 minutes 30 seconds, 10 minutes, 20 minutes, and 30 minutes, ROI was set up on hot cylinder and back radioactivity region. We computated standard deviation of Signal to Noise Ratio (SNR) and BKG (Background), compared with hot cylinder's concentration and change by acquisition time per bed, after measured Standard Uptake Value maximum ($SUV_{max}$). Also, we compared each standard deviation of $SUV_{max}$, SNR, BKG following in change of inspection waiting time (15minutes and 1 hour) by using 4.3 MBq phantom. Results The radioactive concentration per unit mass was increased to 3, 4.3, 5.5, 6.7 MBqs. And when we increased time/bed of each concentration from 1 minute 30 seconds to 30 minutes, we found that the $SUV_{max}$ of hot cylinder acquisition time per bed changed seriously according to each radioactive concentration in up to 18.3 to at least 7.3 from 30 seconds to 2 minutes. On the other side, that displayed changelessly at least 5.6 in up to 8 from 2 minutes 30 seconds to 30 minutes. SNR by radioactive change per unit mass was fixed to up to 0.49 in at least 0.41 in 3 MBqs and accroding as acquisition time per bed increased, rose to up to 0.59, 0.54 in each at least 0.23, 0.39 in 4.3 MBqs and in 5.5 MBqs. It was high to up to 0.59 from 30 seconds in radioactivity concentration 6.7 MBqs, but kept fixed from 0.43 to 0.53. Standard deviation of BKG (Background) was low from 0.38 to 0.06 in 3 MBqs and from 2 minutes 30 seconds after, low from 0.38 to 0 in 4.3 MBqs and 5.5 MBqs from 1 minute 30 seconds after, low from 0.33 to 0.05 in 6.7 MBqs at all section from 30 seconds to 30 minutes. In result that was changed the inspection waiting time to 15 minutes and 1 hour by 4.3 MBq phantoms, $SUV_{max}$ represented each other fixed values from 2 minutes 30 seconds of acquisition time per bed and SNR shown similar values from 1 minute 30 seconds. Conclusion As shown in the above, when we increased radioactive concentration per unit mass by 3, 4.3, 5.5, 6.7 MBqs, the values of $SUV_{max}$ and SNR was kept changelessly each other more than 2 minutes 30 seconds of acquisition time per bed. In the same way, in the change of inspection waiting time (15 minutes and 1 hour), we could find that the values of $SUV_{max}$ and SNR was kept changelessly each other more than 2 minutes 30 seconds of acquisition time per bed. In the result of this NEMA NU2-1994 phantom experiment, we found that the minimum acquisition time per bed was 2 minutes 30 seconds for evaluating values of fixed $SUV_{max}$ and SNR even in change of inserting radioactive concentration. However, this acquisition time can be different according to features and qualities of equipment.

  • PDF

Effect of Temperature on T1 and T2 Relaxation Time in 3.0T MRI (3.0T MRI에서 온도변화가 T1 및 T2 이완시간에 미치는 영향)

  • Kim, Ho-Hyun;Kwon, Soon-Yong;Lim, Woo-Teak;Kang, Chung-Hwan;Kim, Kyung-Soo;Kim, Soon-Bae;Baek, Moon-Young
    • Korean Journal of Digital Imaging in Medicine
    • /
    • v.15 no.2
    • /
    • pp.63-68
    • /
    • 2013
  • Purpose : The relaxation times of tissue in MRI depend on strength of magnetic field, morphology of nuclear, viscosity, size of molecules and temperature. This study intended to analyze quantitatively that materials' temperatures have effects on T1 and T2 relaxation times without changing of other conditions. Materials and Methods : The equipment was used MAGNETOM SKYRA of 3.0T(SIEMENS, Erlagen, Germany), 32 channel spine coil and Gd-DTPA water concentration phantom. To find out T1 relaxation time, Inversion Recovery Spin Echo sequences were used at 50, 400, 1100, 2500 ms of TI. To find out T2 relaxation time, Multi Echo Spin Echo sequences were used at 30, 60, 90, 120, 150, 180, 210, 240, 270 ms of TE. This experiment was scanned with 5 steps from 25 to $45^{\circ}C$. next, using MRmap(Messroghli, BMC Medical Imaging, 2012) T1 and T2 relaxation times were mapped. on the Piview STAR v5.0(Infinitt, Seoul, Korea) 5 steps were measured as the same ROI, and then mean values were calculated. Correlation between the temperatures and relaxation times were analyzed by SPSS(version 17.0, Chicago, IL, USA). Results : According to increase of temperatures, T1 relaxation times were $214.39{\pm}0.25$, $236.02{\pm}0.87$, $267.47{\pm}0.48$, $299.44{\pm}0.64$, $330.19{\pm}1.72$ ms. T2 relaxation times were $180.17{\pm}0.27$, $197.17{\pm}0.44$, $217.92{\pm}0.39$, $239.89{\pm}0.53$, $257.40{\pm}1.77$ ms. With the correlation analysis, the correlation coefficients of T1 and T2 relaxation times were statistically significant at 0.998 and 0.999 (p< 0.05). Conclusion : T1 and T2 relaxation times are increased as temperature of tissue goes up. In conclusion, we suggest to recognize errors of relaxation time caused local temperature's differences, and consider external factors as well in the quantitative analysis of relaxation time or clinical tests.

  • PDF

Structure and Growth of Tin Whisker on Leadframe with Lead-free Solder Finish (무연솔더 도금된 리드프레임에서 Sn 위스커의 성장과 구조)

  • Kim Kyung-Seob;Leem Young-Min;Yu Chong-Hee
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.11 no.3 s.32
    • /
    • pp.1-7
    • /
    • 2004
  • Tin plating on component finishes may grow whiskers under certain conditions, which may cause failures in electronics equipment. To protect the environment, 'lead-free' among component finishes is being promoted worldwide. This paper presents the evaluation results of whiskers on two kinds of lead-free plating materials at the plating temperature and under the reliability test. The rising plating temperature caused increasing the size of plating grain and shorting the growth of whisker. The whisker was grown under the temperature cycling the bent type in matt Sn plating and striated type in malt Sn-Bi. The whisker growth in Sn-Bi plating was shorter than that in Sn plating. In FeNi42 leadframe, the $7.0{\~}10.0{\mu}m$ diameter and the $25.0{\~}45.0{\mu}m$ long whisker was grown under 300 cycles. In the 300 cycles of Cu leadframe, only the nodule(nuclear state) grew on the surface, and in the 600 cycles, a $3.0{\~}4.0{\mu}m$ short whisker grew. After 600 cycles, the ${\~}0.34{\mu}m$ thin $Ni_3Sn_4$ formed on the Sn-plated FeNi42. However, we observed the amount of $0.76{\~}1.14{\mu}m$ thick $Cu_6Sn_5$ and ${\~}0.27{\mu}m$ thin $Cu_3Sn$ intermetallics were observed between the Sn and Cu interfaces. Therefore, the main growth factor of a whisker is the intermetallic compound in the Cu leadframe, and the coefficient of thermal expansion mismatch in FeNi42.

  • PDF

Study on the Micro Crack Detection in Joints by Using Ultrasound Infrared Thermography (초음파 적외선 열화상을 이용한 접합부의 미세균열 검출 연구)

  • Park, Hee-Sang;Choi, Man-Yong;Park, Jeong-Hak;Lee, Seung-Seok;Huh, Yong-Hak;Lee, Bo-Young;Kim, Jae-Seong
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.32 no.2
    • /
    • pp.162-169
    • /
    • 2012
  • This study detected SCC defects of dissimilar metal welded(STS304 and SA106 Gr. b) pipes using the ultrasonic infrared thermography method and the lock-in image treatment method among infrared thermography method. The infrared excitement equipment has 250 Watt of output and 20 kHz of frequency. By using the ultrasound infrared thermography method, the internal defects of dissimilar metal weld joints of pipes used at nuclear power plants could get detected. By an actual PT test, it was observed that the cracks inside the pipe existed not as a single crack but rather as a multiple cracks within a certain area and generated a hot spot image of a broad area on the thermography image. In addition, UT technology could not easily defects detected by the width of $10\;{\mu}m$ fine hair cracks. but, ultrasound infrared thermography technique was defect detected.

A Study of Analytical Integrity Estimations for the Structure and Rotor System of an Emergency Diesel Generator (비상디젤발전기의 회전체 및 구조물 해석적 건전성 평가에 관한 연구)

  • Kim, Chae-Sil;Choi, Heon-Oh;Jung, Hoon-Hyung
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.24 no.2
    • /
    • pp.79-86
    • /
    • 2014
  • This paper describes an integrity evaluation method for emergency diesel generator(EDG) and rotor part of EDG. EDG is a very important equipment in the nuclear power plant(NPP). EDG supplies electricity to the safety-related equipments for the safety shut down of NPP in an emergency situation of earthquake. The safety of the rotor part of EDG is also important during seismic impact from earthquake. The finite element modelling of the EDG including rotor part was constructed. The modal analysis of EDG was firstly performed. The first natural frequency was calculated and revealed higher than the cutoff frequency of seismic spectrum. Then the stress analysis was done to compare with the allowable stress. The safety of the rotor part was investigated by the finite element analysis of the rotor and journal bearing interaction to find film thickness and critical speed. The seismic load was applied to rotor part in a manner that the load was a weighted static load. Analysis results showed that the maximum stress was within the range of allowable stress and the film thickness is larger than the permissible minimum thickness, and the critical speed was out of the operating speed. Hence, the structural and dynamic integrity of EDG could be confirmed by the numerical analysis method used in this paper. However, dynamic analysis of a rotating rotor and supporting bearing with the seismic impact needs to be investigated in a more rigorous method since the seismic load to the rotating part complicates the behavior of rotating system.

Radiation Protection Effect of Selenium on the Rat's Prostate (흰쥐의 전립선에 대한 셀레늄(Se)의 방사선 방호효과)

  • Choi, Hyung-Seok;Choi, Jun-Hyeok;Jung, Do-Young;Kim, Jang-Oh;Shin, Ji-Hye;Kim, Joo-Hee;Min, Byung-In
    • Journal of radiological science and technology
    • /
    • v.40 no.2
    • /
    • pp.317-322
    • /
    • 2017
  • High-tech medical equipment has increased the utilization of radiation in the medical field. As a result, research on radiation protection using natural materials has become an important social issue. Selenium is a natural substance that is highly expressed in prostate known that an essential role in prostate cells. Selenium was orally administered to Rat and irradiated with 10 Gy of radiation. Then, the prostate tissue w as used as a target organ for 1 day, 7 days and 21 days to investigate the radiation protection effect of selenium through changes of blood components, Superoxide Dismutase and histological changes. As a result, there was a significant protective effect of hematopoietic immune system(hemoglobin concentration, neutrophil, platelet) in the group irradiated with selenium(p<0.05). the observation of tissue changes selenium is an effective component to increase Superoxide Dismutase activity, and it was confirmed that it has an effect of inhibiting the expression of hypertrophy of prostate by irradiation. Therefore, it is considered that selenium can be utilized as a radioprotective agent by inducing prevention of prostate-related diseases.

A study on simulation modeling of the underground space environment-focused on storage space for radioactive wastes (지하공간 환경예측 시뮬레이션 개발 연구-핵 폐기물 저장공간 중심으로)

  • 이창우
    • Tunnel and Underground Space
    • /
    • v.9 no.4
    • /
    • pp.306-314
    • /
    • 1999
  • In underground spaces including nuclear waste repository, prediction of air quantity, temperature/humidity and pollutant concentration is utmost important for space construction and management during the normal state as well as for determining the measures in emergency cases such as underground fires. This study aims at developing a model for underground space environment which has capabilities to take into account the effects of autocompression for the natural ventilation head calculation, to find the optimal location and size of fans and regulators, to predict the temperature and humidity by calculating the convective heat transfer coefficient and the sensible and latent heat transfer rates, and to estimate the pollutant levels throughout the network. The temperature/humidity prediction model was applied to a military storage underground space and the relative differences of dry and wet temperatures were 1.5 ~ 2.9% and 0.6 ~ 6.1%, respectively. The convection-based pollutant transport model was applied to two different vehicle tunnels. Coefficients of turbulent diffusion due to the atmospheric turbulence were found to be 9.78 and 17.35$m^2$/s, but measurements of smoke and CO concentrations in a tunnel with high traffic density and under operation of ventilation equipment showed relative differences of 5.88 and 6.62% compared with estimates from the convection-based model. These findings indicate convection is the governing mechanism for pollutant diffusion in most of the tunnel-type spaces.

  • PDF

Evaluation of the Radiation Dosage Flowing out of the Hot Cell During Synthesis of 18FDG (18FDG 합성시 핫셀장비 외부로 유출 방사선의 선량 평가)

  • Jung, Hongmoon;Cho, June ho;Jung, Jaeeun;Won, Doyeon
    • Journal of the Korean Society of Radiology
    • /
    • v.7 no.5
    • /
    • pp.365-369
    • /
    • 2013
  • Intravenous injection is administered with radioactive medical isotopes to detect disease on Positron Emission Tomography (PET). In this case, typically, $^{18}FDG$ (Fluorodeoxyglucose) is used as a radioactive medicine. Cassette equipment is needed to synthesize deoxyglucose with $^{18}F$, produced by medical cyclotron. Production of radioactive medicine creates a lot of radiation, thus Hot Cell is used to shield a secondary radiation. We measured the radiation dosage flowing out of the hot cell during synthesis of $^{18}FDG$ or distribution. The purpose of this study is to provide the information of radiation dosage regarding the occupational exposure that unintentionally occurs during the synthesis of $^{18}FDG$. In conclusion, we confirmed the radiation dosage out of the hot cell during the $^{18}FDG$ synthesis. Especially, we observed that the radiation flowed out through the lead window, attached as a view port. Thus, it is considered that the improvement of a lead window is necessary in order to decrease the occupational exposure during the $^{18}FDG$ synthesis.