• 제목/요약/키워드: nuclear containment

검색결과 502건 처리시간 0.021초

Pump availability prediction using response surface method in nuclear plant

  • Parasuraman Suganya;Ganapathiraman Swaminathan;Bhargavan Anoop
    • Nuclear Engineering and Technology
    • /
    • 제56권1호
    • /
    • pp.48-55
    • /
    • 2024
  • The safety-related raw water system's strong operational condition supports the radiation defense and biological shield of nuclear plant containment structures. Gaps and failures in maintaining proper working condition of main equipment like pump were among the most common causes of unavailability of safety related raw water systems. We integrated the advanced data analytics tools to evaluate the maintenance records of water systems and gave special consideration to deficiencies related to pump. We utilized maintenance data over a three-and-a-half-year period to produce metrics like MTBF, MTTF, MTTR, and failure rate. The visual analytic platform using tableau identified the efficacy of maintenance & deficiency in the safety raw water systems. When the number of water quality violation was compared to the other O&M deficiencies, it was discovered that water quality violations account for roughly 15% of the system's deficiencies. The pumps were substantial contributors to the deficit. Pump availability was predicted and optimized with real time data using response surface method. The prediction model was significant with r-squared value of 0.98. This prediction model can be used to predict forth coming pump failures in nuclear plant.

Safety assessment of generation III nuclear power plant buildings subjected to commercial aircraft crash part III: Engine missile impacting SC plate

  • Xu, Z.Y.;Wu, H.;Liu, X.;Qu, Y.G.;Li, Z.C.;Fang, Q.
    • Nuclear Engineering and Technology
    • /
    • 제52권2호
    • /
    • pp.417-428
    • /
    • 2020
  • Investigations of the commercial aircraft impact effect on nuclear island infrastructures have been drawing extensive attention, and this paper aims to perform the safety assessment of Generation III nuclear power plant (NPP) buildings subjected to typical commercial aircrafts crash. At present Part III, the local damage of the rigid components of aircraft, e.g., engine and landing gear, impacting the steel concrete (SC) structures of NPP containment is mainly discussed. Two typical SC target panels with the thicknesses of 40 mm and 100 mm, as well as the steel cylindrical projectile with a mass of 2.15 kg and a diameter of 80 mm are fabricated. By using a large-caliber air gas gun, both the projectile penetration and perforation test are conducted, in which the striking velocities were ranged from 96 m/s to 157 m/s. The bulging velocity and the maximal deflection of rear steel plate, as well as penetration depth of projectile are derived, and the local deformation and failure modes of SC panels are assessed experimentally. Then, the commercial finite element program LS-DYNA is utilized to perform the numerical simulations, by comparisons with the experimental and simulated projectile impact process and SC panel damage, the numerical algorithm, constitutive models and the corresponding parameters are verified. The present work can provide helpful references for the evaluation of the local impact resistance of NPP buildings against the aircraft engine.

Safety assessment of Generation III nuclear power plant buildings subjected to commercial aircraft crash Part I: FE model establishment and validations

  • Liu, X.;Wu, H.;Qu, Y.G.;Xu, Z.Y.;Sheng, J.H.;Fang, Q.
    • Nuclear Engineering and Technology
    • /
    • 제52권2호
    • /
    • pp.381-396
    • /
    • 2020
  • Investigations of the commercial aircraft impact effect on nuclear island infrastructures have been drawing extensive attention, and this paper aims to perform the safety assessment of Generation III nuclear power plant (NPP) buildings subjected to typical commercial aircrafts crash. At present Part I, finite element (FE) models establishment and validations for both the aircrafts and NPP buildings are performed. (i) Airbus A320 and A380 aircrafts are selected as the representative medium and large commercial aircrafts, and the corresponding fine FE models including the skin, beam, fuel and etc. are established. By comparing the numerically derived impact force time-histories with the existing published literatures, the rationality of aircrafts models is verified. (ii) Fine FE model of the Chinese Zhejiang Sanao NPP buildings is established, including the detailed structures and reinforcing arrangement of both the containment and auxiliary buildings. (iii) By numerically reproducing the existing 1/7.5 scaled aircraft model impact tests on steel plate reinforced concrete (SC) panels and assessing the impact process and velocity time-history of aircraft model, as well as the damage and the maximum deflection of SC panels, the applicability of the existing three concrete constitutive models (i.e., K&C, Winfrith and CSC) are evaluated and the superiority of Winfrith model for SC panels under deformable missile impact is verified. The present work can provide beneficial reference for the integral aircraft crash analyses and structural damage assessment in the following two parts of this paper.

Water film covering characteristic on horizontal fuel rod under impinging cooling condition

  • Penghui Zhang;Bowei Wang;Ronghua Chen;G.H. Su;Wenxi Tian;Suizheng Qiu
    • Nuclear Engineering and Technology
    • /
    • 제54권11호
    • /
    • pp.4329-4337
    • /
    • 2022
  • Jet impinging device is designed for decay heat removal on horizontal fuel rods in a low temperature heating reactor. An experimental system with a fuel rod simulator is established and experiments are performed to evaluate water film covering capacity, within 0.0287-0.0444 kg/ms mass flow rate, 0-164.1 kW/m2 heating flux and 13.8-91.4℃ feeding water temperature. An effective method to obtain the film coverage rate by infrared equipment is proposed. Water film flowing patterns are recoded and the film coverage rates at different circumference angles are measured. It is found the film coverage rate decreases with heating flux during single-phase convection, while increases after onset of nucleate boiling. Besides, film coverage rate is found affected by Marangoni effect and film accelerating effect, and surface wetting is significantly facilitated by bubble behavior. Based on the observed phenomenon and physical mechanism, dry-out depth and initial dry-out rate are proposed to evaluate film covering potential on a heating surface. A model to predict film coverage rate is proposed based on the data. The findings would have reliable guide and important implications for further evaluation and design of decay heat removal system of new reactors, and could be helpful for passive containment cooling research.

변형률과 응력파속도를 이용한 부착식 텐던의 긴장력 평가 (An Assessment of the Prestress Force on the Bonded Tendon Using the Strain and the Stress Wave Velocity)

  • 장정범;황경민;이홍표;김병화
    • 대한토목학회논문집
    • /
    • 제32권3A호
    • /
    • pp.183-188
    • /
    • 2012
  • 국내 일부 가동 중 원전의 원자로건물에 부착식 텐던이 시공되어 있고, 이들에 대한 긴장력 평가는 원자로건물의 구조 건전성 평가 시 매우 중요하다. 따라서, 본 논문에서는 기존의 간접적인 부착식 텐던의 긴장력 평가방법을 개선하기 위하여 개발된 SI 기술과 충격신호 분석기술을 이용하여 실제 원자로건물에 매입된 부착식 텐던을 대상으로 긴장력을 평가하였다. 이를 위해 원자로건물에서 발생하는 변형률과 부착식 텐던에서 발생하는 응력파속도를 계측하였다. 이들을 통해 부착식 텐던의 긴장력을 평가한 결과, SI 기술과 충격신호 분석기술 모두 높은 신뢰성 있는 결과를 제시하였고, 기존의 이론적인 접근 방법에 의한 결과와도 매우 유사한 경향을 제시함으로써 본 연구진에서 개발한 부착식 텐던의 긴장력 평가방법이 매우 유용함을 확인할 수 있었다.

고 선량율 감마선 조사에 따른 렌즈의 열화 (A CCD Camera Lens Degradation Caused by High Dose-Rate Gamma Irradiation)

  • 조재완;이준구;허섭;구인수;홍석붕
    • 전기학회논문지
    • /
    • 제58권7호
    • /
    • pp.1450-1455
    • /
    • 2009
  • Assumed that an IPTV camera system is to be used as an ad-hoc sensor for the surveillance and diagnostics of safety-critical equipments installed in the in-containment building of the nuclear power plant, an major problem is the presence of high dose-rate gamma irradiation fields inside the one. In order to uses an IPTV camera in such intense gamma radiation environment of the in-containment building, the radiation-weakened devices including a CCD imaging sensor, FPGA, ASIC and microprocessors are to be properly shielded from high dose-rate gamma radiation using the high-density material, lead or tungsten. But the passive elements such as mirror, lens and window, which are placed in the optical path of the CCD imaging sensor, are exposed to a high dose-rate gamma ray source directly. So, the gamma-ray irradiation characteristics of the passive elements, is needed to test. A CCD camera lens, made of glass material, have been gamma irradiated at the dose rate of 4.2 kGy/h during an hour up to a total dose of 4 kGy. The radiation induced color-center in the glass lens is observed. The degradation performance of the gamma irradiated lens is explained using an color component analysis.

The capacity loss of a RCC building under mainshock-aftershock seismic sequences

  • Zhai, Chang-Hai;Zheng, Zhi;Li, Shuang;Pan, Xiaolan
    • Earthquakes and Structures
    • /
    • 제15권3호
    • /
    • pp.295-306
    • /
    • 2018
  • Reinforced concrete containment (RCC) building has long been considered as the last barrier for keeping the radiation from leaking into the environment. It is important to quantify the performance of these structures and facilities considering extreme conditions. However, the preceding research on evaluating nuclear power plant (NPP) structures, particularly considering mainshock-aftershock seismic sequences, is deficient. Therefore, this manuscript serves to investigate the seismic fragility of a typical RCC building subjected to mainshock-aftershock seismic sequences. The implementation of the fragility assessment has been performed based on the incremental dynamic analysis (IDA) method. A lumped mass RCC model considering the tri-linear skeleton curve and the maximum point-oriented hysteretic rule is employed for IDA analyses. The results indicate that the seismic capacity of the RCC building would be overestimated without taking into account the mainshock-aftershock effects. It is also found that the seismic capacity of the RCC building decreases with the increase of the relative intensity of aftershock ground motions to mainshock ground motions. In addition, the effects of artificial mainshock-aftershock ground motions generated from the repeated and randomized approaches and the polarity of the aftershock with respect to the mainshock on the evaluation of the RCC are also researched, respectively.

다중 지진 시나리오를 고려한 원전 격납구조물의 조건부 평균 스펙트럼 기반 지진취약도 평가 (Seismic Fragility Assessment of NPP Containment Structure based on Conditional Mean Spectra for Multiple Earthquake Scenarios)

  • 박원호;박지훈
    • 한국지진공학회논문집
    • /
    • 제23권6호
    • /
    • pp.301-309
    • /
    • 2019
  • A methodology to assess seismic fragility of a nuclear power plant (NPP) using a conditional mean spectrum is proposed as an alternative to using a uniform hazard response spectrum. Rather than the single-scenario conditional mean spectrum, which is the conventional conditional mean spectrum based on a single scenario, a multi-scenario conditional mean spectrum is proposed for the case in which no single scenario is dominant. The multi-scenario conditional mean spectrum is defined as the weighted average of different conditional mean spectra, each one of which corresponds to an individual scenario. The weighting factors for scenarios are obtained from a deaggregation of seismic hazards. As a validation example, a seismic fragility assessment of an NPP containment structure is performed using a uniform hazard response spectrum and different single-scenario conditional mean spectra and multi-scenario conditional mean spectra. In the example, the number of scenarios primarily influences the median capacity of the evaluated structure. Meanwhile, the control frequency, a key parameter of a conditional mean spectrum, plays an important role in reducing logarithmic standard deviation of the corresponding fragility curves and corresponding high confidence of low probability of failure (HCLPF) capacity.

긴 게이지 길이 광섬유 격자 센서의 측정과 응용 (A Study on the Measurement and Application of Long Gauge fiber Brags Grating Sensors)

  • 김기수
    • 비파괴검사학회지
    • /
    • 제25권5호
    • /
    • pp.343-349
    • /
    • 2005
  • 광섬유 브래그 격자(fiber Bragg grating, FBC)는 1989년 Melts의 실험이후 광통신 분야 및 센서 분야에 다양한 용도를 가지고 있다. 이를 이용하여 광섬유 레이저, 대역 통과 필터로 사용하거나, 여러 가지 물리량을 측정하기 위한 온도, 변형률, 변위센서 등에 응용할 수 있다. 특히 본 연구에서는 기존 센서가 가지지 못한 긴 게이지 길이에서의 측정을 위해서 광섬유 센서 정적 시스템(FBG Static Logger)과 FBG 센서가 포함된 긴 길이의 광섬유를 이용하여 장대 구조물의 변형이나 외부 reference의 상대변위를 길게 연결하여 측정하기 쉽지 않은 변위를 측정하여 구조물의 상황을 상시 점검하고 더 나아가 잔존수명을 예측하고 보수시기를 알려줄 수 있는 방법을 모색하여 FBG. 센서의 패키지(package)를 고안하였다. 이를 통해 효율적인 장거리 변위 측정방법을 정립하고 이를 원자력 격납구조물에 적용하여 성공적으로 측정함으로써 광섬유 격자센서를 이용하여 50m 이상의 장거리 계측의 가능성을 보여 주었다.

강진지속시간 기준 개선을 위한 원전 격납구조물의 지진응답해석 (Seismic Response Analysis of NPP Containment Structures to Improve the Guidelines of Strong Motion Duration)

  • 허정원;정호섭;김재민;현창헌
    • 한국지진공학회논문집
    • /
    • 제15권4호
    • /
    • pp.33-43
    • /
    • 2011
  • 이 논문은 원전구조물의 내진설계에 적용되는 인공지진파의 강진지속시간과 포락함수에 대한 현행 국내 설계기준의 개선과 보완을 위해서 필요한 기반연구에 관한 내용을 다루고 있다. USNRC와 ASCE 4-98에서 제안한 응답스펙트럼과 강진지속시간에 대한 규정이 현재 통상적으로 사용되고 있으며, 첫 번째로 두 기준에 대한 비교와 검토를 수행하였다. 다음으로 총 209개의 암반사이트에서 실제 계측된 규모 5.0 이상인 강진기록을 ASCE 4-98의 강진지속시간기준에 적용한 결과를 통계 처리하여 지진규모에 대한 함수로 표현되는 강진지속시간의 실험적 예측모델을 제시하였다. 마지막으로 강진지속시간이 원전구조물의 지진응답특성에 미치는 영향을 파악하기 위하여 6초에서 20초까지 약 2초 간격으로 강진지속시간을 달리하는 10가지 Case에 대한 인공지진파를 각 30개씩 작성하고, 이들을 적용하여 대만 Hualien 지진시험구조물과 국내 울진 원자력발전소 원자로 격납구조물에 대한 광범위한 지진응답해석을 수행하고 그 결과를 분석하였다.