• Title/Summary/Keyword: nuclear containment

Search Result 494, Processing Time 0.02 seconds

A Study on Evaluation of Ultimate Internal Pressure Capacity of CANDU-type Nuclear Containment Buildings (CANDU형 원자로 격납건물의 극한내압능력 평가에 관한 연구)

  • Kim, Sun-Hoon
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.24 no.3
    • /
    • pp.343-351
    • /
    • 2011
  • Nuclear containment building is the last barrier for being secure from any nuclear power plant accident. Therefore, it is very important to understand the ultimate capacity of nuclear containment building to loads associated with severe accidents. LOCA (loss of coolant accident) is considered as the basic accidental load and CANDU-type containment building is considered as a target structure in order to conduct the numerical analysis for the structural safety of a containment building. The CANDU-type containment building is a prestressed concrete shell structure which has the dome and the cylindrical wall and is reinforced with bonded tendons. In this paper, the evaluation of ultimate internal pressure capacity was carried out by nonlinear analysis of a prestressed concrete containment building using 3-dimensional structural analysis system.

Parametric analyses for the design of a closed-loop passive containment cooling system

  • Bang, Jungjin;Hwang, Ji-Hwan;Kim, Han Gon;Jerng, Dong-Wook
    • Nuclear Engineering and Technology
    • /
    • v.53 no.4
    • /
    • pp.1134-1145
    • /
    • 2021
  • A design parameter study is presented for the closed-loop type passive containment cooling system (PCCS) which is equipped with two heat exchangers: one installed at the inside of the containment and the other submerged in the water pool at the outside of the containment. A GOTHIC code model for PCCS performance analyses was set up and the design parameters such as the heat exchanger sizes, locations, and water pool tank volumes were analyzed to investigate the feasibility of installing this type of PCCS in PWRs like OPR-1000 being operated in Korea. We identified the size of the circulation loop and heat exchangers as major design parameters affecting the performance of PCCS. The analyses showed that the heat exchangers in the inside of the containment would be more influential on the heat removal capability of PCCS than that installed in the water pool at the outside of the containment. Hence, it was recommended to down-size the heat exchangers in the water pool to optimize PCCS without compromising its performance. Based on the parametric study, it was demonstrated that a closed-loop type PCCS could be designed sufficiently compact for installation in the available space within the containment of PWRs like OPR-1000.

Effective Thermal Conductivity and Diffusivity of Containment Wall for Nuclear Power Plant OPR1000

  • Noh, Hyung Gyun;Lee, Jong Hwi;Kang, Hie Chan;Park, Hyun Sun
    • Nuclear Engineering and Technology
    • /
    • v.49 no.3
    • /
    • pp.459-465
    • /
    • 2017
  • The goal of this study is to evaluate the effective thermal conductivity and diffusivity of containment walls as heat sinks or passive cooling systems during nuclear power plant (NPP) accidents. Containment walls consist of steel reinforced concrete, steel liners, and tendons, and provide the main thermal resistance of the heat sinks, which varies with the volume fraction and geometric alignment of the rebar and tendons, as well as the temperature and chemical composition. The target geometry for the containment walls of this work is the standard Korean NPP OPR1000. Sample tests and numerical simulations are conducted to verify the correlations for models with different densities of concrete, volume fractions, and alignments of steel. Estimation of the effective thermal conductivity and diffusivity of the containment wall models is proposed. The Maxwell model and modified Rayleigh volume fraction model employed in the present work predict the experiment and finite volume method (FVM) results well. The effective thermal conductivity and diffusivity of the containment walls are summarized as functions of density, temperature, and the volume fraction of steel for the analysis of the NPP accidents.

An Assessment on the Containment Integrity of Korean Standard Nuclear Power Plants Against Direct Containment Heating Loads

  • Seo, Kyung-Woo;Kim, Moo-Hwan;Lee, Byung-Chul;Jeun, Gyoo-Dong
    • Nuclear Engineering and Technology
    • /
    • v.33 no.5
    • /
    • pp.468-482
    • /
    • 2001
  • As a process of Direct Containment Heating (DCH) issue resolution for Korean Standard Nuclear Power Plants (KSNPs), a containment load/strength assessment with two different approaches, the probabilistic and the deterministic, was performed with all plant-specific and phenomena-specific data. In case of the probabilistic approach, the framework developed to support the Zion DCH study, Two-Cell Equilibrium (TCE) coupled with Latin Hypercubic Sampling (LHS), provided a very efficient tool to resolve DCH issue. In case of the deterministic approach, the evaluation methodology using the sophisticated mechanistic computer code, CONTAIN 2.0 was developed, based on findings from DCH-related experiments or analyses. For three bounding scenarios designated as Scenarios V, Va, and VI, the calculation results of TCE/LHS and CONTAIN 2.0 with the conservatism or typical estimation for uncertain parameters, showed that the containment failure resulted from DCH loads was not likely to occur. To verify that these two approaches might be conservative , the containment loads resulting from typical high-pressure accident scenarios (SBO and SBLOCA) for KSNPs were also predicted. The CONTAIN 2.0 calculations with boundary and initial conditions from the MAAP4 predictions, including the sensitivity calculations for DCH phenomenological parameters, have confirmed that the predicted containment pressure and temperature were much below those from these two approaches, and, therefore, DCH issue for KSNPS might be not a problem.

  • PDF

The Plant-specific Impact of Different Pressurization Rates in the Probabilistic Estimation of Containment Failure Modes

  • Ahn, Kwang-ll;Yang, Joon-Eon;Ha, Jae-Joo
    • Nuclear Engineering and Technology
    • /
    • v.35 no.2
    • /
    • pp.154-164
    • /
    • 2003
  • The explicit consideration of different pressurization rates in estimating the probabilities of containment failure modes has a profound effect on the confidence of containment performance evaluation that is so critical for risk assessment of nuclear power plants. Except for the sophisticated NUREG-1150 study, many of the recent containment performance analyses (through Level 2 PSAs or IPE back-end analyses) did not take into account an explicit distinction between slow and fast pressurization in their analyses. A careful investigation of both approaches shows that many of the approaches adopted in the recent containment performance analyses exactly correspond to the NUREG-1150 approach for the prediction of containment failure mode probabilities in the presence of fast pressurization. As a result, it was expected that the existing containment performance analysis results would be subjected to greater or less conservatism in light of the ultimate failure mode of the containment. The main purpose of this paper is to assess potential conservatism of a plant-specific containment performance analysis result in light of containment failure mode probabilities.

Comparisons of performance and operation characteristics for closed- and open-loop passive containment cooling system design

  • Bang, Jungjin;Jerng, Dong-Wook;Kim, Hangon
    • Nuclear Engineering and Technology
    • /
    • v.53 no.8
    • /
    • pp.2499-2508
    • /
    • 2021
  • Passive containment cooling systems (PCCSs) have been actively studied to improve the inherent safety of nuclear power plants. Hered, we present two concepts, open-loop PCCS (OL-PCCS) and closed-loop PCCS (CL-PCCS), applicable to the PWR with a concrete-type containment. We analyzed the heat-removal performance and flow instability of these PCCS concepts using the GOTHIC code. In both cases, PCCS performance improved when a passive containment cooling heat exchanger (PCCX) was installed in the lower part of the containment building. The OL-PCCS was found to be superior in terms of heat-removal performance. However, in terms of flow instability, the OL-PCCS was more vulnerable than the CL-PCCS. In particular, the possibility of flow instability was higher when the PCCX was installed in the upper part of the containment. Therefore, the installation location of the OL-PCCS should be restricted to minimize flow instability. Conversely, a CL-PCCS can be installed without any positional restriction by adjusting the initial system pressure within the loop, which eliminates flow instability. These results could be used as base data for the thermo-hydraulic evaluation of PCCS in PWR with a large dry concrete-type containment.

Development of analysis program for direct containment heating

  • Jiang, Herui;Shen, Geyu;Meng, Zhaoming;Li, Wenzhe;Yan, Ruihao
    • Nuclear Engineering and Technology
    • /
    • v.54 no.8
    • /
    • pp.3130-3139
    • /
    • 2022
  • Direct containment heating (DCH) is one of the potential factors leading to early containment failure. DCH is closely related to safety analysis and containment performance evaluation of nuclear power plants. In this study, a DCH prediction program was developed to analyze the DCH loads of containment vessel. The phenomenological model of debris dispersal, metal oxidation reaction, debris-atmospheric heat transfer and hydrogen jet burn was established. Code assessment was performed by comparing with several separate effect tests and integral effect tests. The comparison between the predicted results and experimental data shows that the program can predict the key parameters such as peak pressure, temperature, and hydrogen production in containment well, and for most comparisons the relative errors can be maintained within 20%. Among them, the prediction uncertainty of hydrogen production is slightly larger. The analysis shows that the main sources of the error are the difference of time scale and the oxidation of cavity debris.

Evaluation of Prediction Methods for Containment Integrated Leakage Rate (격납건물 종합누설률 예측방법 평가)

  • Yang, Seung-Ok;Lee, Kwang-Dae;Oh, Eung-Se
    • Proceedings of the KIEE Conference
    • /
    • 2004.11c
    • /
    • pp.562-564
    • /
    • 2004
  • The containment leakage rate test performed on the nuclear power plants consists of following phases : pressurizing the containment, stabilizing the atmosphere, conducting a Type A test, conducting a verification test, depressurizing the containment. It takes more than 48 hours from the pressurization to the depressurization and the prediction of the results will help to prepare the next test phase. In this paper, to predict the leakage rate, the prediction methods based on the least square method are evaluated according to the input variables and the measurement period.

  • PDF

Study on the Fiber Bragg Grating Smart Sensors for Containment Structure in Nuclear Power Plant (스마트 구조물용 광섬유 격자센서의 원전격납건물 적용 실험 연구)

  • Kim Ki-Soo;Song Young-Chul;Pang Gi-Sung;Yoon Duk-Joong
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.412-415
    • /
    • 2004
  • This study was performed to verify the behaviors of fiber Bragg grating (FBG) sensors attached to the containment structure in the nuclear power plant as a part of structural integrity test which demonstrates that the structural response of the non-prototype primary containment structure is within predicted limits plus tolerances when pressurized to $115\%$ of containment design pressure, and that the containment does not sustain any structural damage.

  • PDF

Crash analysis of military aircraft on nuclear containment

  • Sadique, M.R.;Iqbal, M.A.;Bhargava, P.
    • Structural Engineering and Mechanics
    • /
    • v.53 no.1
    • /
    • pp.73-87
    • /
    • 2015
  • In case of aircraft impact on nuclear containment structures, the initial kinetic energy of the aircraft is transferred and absorbed by the outer containment, may causing either complete or partial failure of containment structure. In the present study safety analysis of BWR Mark III type containment has been performed. The total height of containment is 67 m. It has a circular wall with monolithic dome of 21m diameter. Crash analysis has been performed for fighter jet Phantom F4. A normal hit at the crown of containment dome has been considered. Numerical simulations have been carried out using finite element code ABAQUS/Explicit. Concrete Damage Plasticity model have been incorporated to simulate the behaviour of concrete at high strain rate, while Johnson-Cook elasto-visco model of ductile metals have been used for steel reinforcement. Maximum deformation in the containment building has reported as 33.35 mm against crash of Phantom F4. Deformations in concrete and reinforcements have been localised to the impact region. Moreover, no significant global damage has been observed in structure. It may be concluded from the present study that at higher velocity of aircraft perforation of the structure may happen.