• Title/Summary/Keyword: nuclear concrete

Search Result 625, Processing Time 0.025 seconds

Study on Mix Proportion of Self-Compacting Concrete Utilizing Polycarboxylic Acid based Admixture (폴리카본산계 혼화제를 이용한 고유동 콘크리트 배합에 관한 연구)

  • Noh, Jea-Myoung;Kwon, Ki-Joo;Nah, Hwan-Seon;Joung, Won-Seoup;Oh, Byung-Cheol
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.212-215
    • /
    • 2004
  • While member sections of concrete structures of nuclear power plant are big, water-cement ratio is small. Consequently, the huge amount of heat generation and high viscosity could be occurred. These might reduce constructibility of nuclear power plant. In order to obtain improved concrete mix proportion on nuclear power plant structures, the properties of normal concrete is compared with self-compacting concrete. In addition, various mixes of self-compacting concrete utilizing polycarboxylic acid based admixture is mutually compared and estimated.

  • PDF

The Comparative Experimental Study of short and long-term Behavior of the Blended High-Fluidity Cement Concrete and Existing Nuclear Power Plant Structural Concrete (기존 원전용 콘크리트와 다성분계 고유동 콘크리트의 장·단기거동 비교 실험 연구)

  • Lee, Pyung-Suk;Kwon, Ki-Joo;Kim, Su-Man
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.8 no.4
    • /
    • pp.195-202
    • /
    • 2004
  • In this study, it was founded to make the optimal mixture for producing concrete which is self-compacting, yet, and generates low heat of hydration by using flyash, blast furnace slags and limestone powders as binders in addition to cement while using super-plasticizers and viscosity agents as admixture agents. The structural behaviors of the concrete produced with the selected mixture were compared with those of the concrete currently using for construction of nuclear power plants. The study shows that the blended high fluidity concrete including limestone is better in workability and durability than the concrete currently in use for nuclear power plants.

Development of Micro-Blast Type Scabbling Technology for Contaminated Concrete Structure in Nuclear Power Plant Decommissioning

  • Lee, Kyungho;Chung, Sewon;Park, Kihyun;Park, SeongHee
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.20 no.1
    • /
    • pp.99-110
    • /
    • 2022
  • In decommissioning a nuclear power plant, numerous concrete structures need to be demolished and decontaminated. Although concrete decontamination technologies have been developed globally, concrete cutting remains problematic due to the secondary waste production and dispersion risk from concrete scabbling. To minimize workers' radiation exposure and secondary waste in dismantling and decontaminating concrete structures, the following conceptual designs were developed. A micro-blast type scabbling technology using explosive materials and a multi-dimensional contamination measurement and artificial intelligence (AI) mapping technology capable of identifying the contamination status of concrete surfaces. Trials revealed that this technology has several merits, including nuclide identification of more than 5 nuclides, radioactivity measurement capability of 0.1-107 Bq·g-1, 1.5 kg robot weight for easy handling, 10 cm robot self-running capability, 100% detonator performance, decontamination factor (DF) of 100 and 8,000 cm2·hr-1 decontamination speed, better than that of TWI (7,500 cm2·hr-1). Hence, the micro-blast type scabbling technology is a suitable method for concrete decontamination. As the Korean explosives industry is well developed and robot and mapping systems are supported by government research and development, this scabbling technology can efficiently aid the Korean decommissioning industry.

MODELING OF NONLINEAR CYCLIC LOAD BEHAVIOR OF I-SHAPED COMPOSITE STEEL-CONCRETE SHEAR WALLS OF NUCLEAR POWER PLANTS

  • Ali, Ahmer;Kim, Dookie;Cho, Sung Gook
    • Nuclear Engineering and Technology
    • /
    • v.45 no.1
    • /
    • pp.89-98
    • /
    • 2013
  • In recent years steel-concrete composite shear walls have been widely used in enormous high-rise buildings. Due to high strength and ductility, enhanced stiffness, stable cycle characteristics and large energy absorption, such walls can be adopted in the auxiliary building; surrounding the reactor containment structure of nuclear power plants to resist lateral forces induced by heavy winds and severe earthquakes. This paper demonstrates a set of nonlinear numerical studies on I-shaped composite steel-concrete shear walls of the nuclear power plants subjected to reverse cyclic loading. A three-dimensional finite element model is developed using ABAQUS by emphasizing on constitutive material modeling and element type to represent the real physical behavior of complex shear wall structures. The analysis escalates with parametric variation in steel thickness sandwiching the stipulated amount of concrete panels. Modeling details of structural components, contact conditions between steel and concrete, associated boundary conditions and constitutive relationships for the cyclic loading are explained. Later, the load versus displacement curves, peak load and ultimate strength values, hysteretic characteristics and deflection profiles are verified with experimental data. The convergence of the numerical outcomes has been discussed to conclude the remarks.

Nonlinear Flexural Analysis of PSC Test Beams in CANDU Nuclear Power Plants

  • Bae, In-Hwan;Choi, In-Kil;Seo, Jeong-Moon
    • Nuclear Engineering and Technology
    • /
    • v.32 no.2
    • /
    • pp.180-190
    • /
    • 2000
  • In this study, nonlinear analyses of prestressed concrete(PSC) test beams for inservice inspection of prestressed concrete containments for CANDU nuclear power plants are presented. In the analysis the material nonlinearities of concrete, rebar and prestressing steel are used. To reduce the numerical instability with respect to the used finite element mesh size, the tension stiffening effect has been considered. For concrete, the tensile stress-strain relationship derived from tests is modified and the stress-strain curve of rebar is assumed as a simple bilinear model. The stress-strain curve of prestressing steel is applied as a multilineal curve with the first straight line up to 0.8fpu. To prove the validity of the applied material models, the behavior and strength of the PSC test specimens tested to failure have been evaluated. A reasonable agreement between the experimental results and the predictions is obtained. Parametric studies on the tension stiffening effects, the impact of prestressing losses with time, and the compressive strength of concrete have been conducted.

  • PDF

Comparison of Laser Scabbling Efficiency According to Concrete Mixing Design Conditions (콘크리트 배합설계조건에 따른 레이저 스캐블링 효율성 비교)

  • Heo, Seong-Uk;Lee, Jae-Yong;Chung, Chul-Woo;Kim, Ji-Hyun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2021.11a
    • /
    • pp.156-157
    • /
    • 2021
  • Since concrete is contaminated or radioactive during operation of nuclear power plants, it is the most important radioactive waste generated during the dismantling of a nuclear power plant. The amount of waste is different depending on the pollution state of each facility and the applied technology is different, so there is a big difference. We aim to reduce the amount of waste and increase the value of recyclability through technology to remove radionuclides attached to the surface. For this purpose, laser scabbling, which exfoliates the surface of concrete by irradiating a laser, and a facility system for controlling dust and dust are used in parallel. The purpose of this study is to evaluate the efficiency of laser scabbling by manufacturing simulated concrete for nuclear facilities, and to review the optimal mixing design conditions for nuclear facility structures.

  • PDF

Durability Etimation with Deterioration of Concrete in Nuclear Structure (원전구조물 콘크리트의 열화에 따른 내구성 평가)

  • Won, Min-Sik;Choi, Yoon-Suk;Shin, Jung-Ho;Yang, Eun-Ik;Kim, Ho-Jin;Kim, Do-Kyum
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2010.05a
    • /
    • pp.223-224
    • /
    • 2010
  • As the demand on nuclear power is increasing, it is required to investigate for concrete durability in nuclear structure. However, the inspected datas for durability are insufficient in nuclear structure. The test specimens are prepared according to the mix design that has been used in the domestic nuclear structure. And, the characteristics of durability are investigated for the specimens. It will be needed to estimate the long-term durability.

  • PDF

WASHING-ELECTROKINETIC DECONTAMINATION FOR CONCRETE CONTAMINATED WITH COBALT AND CESIUM

  • Kim, Gye-Nam;Yang, Byeong-Il;Choi, Wang-Kyu;Lee, Kune-Woo;Hyeon, Jay-Hyeok
    • Nuclear Engineering and Technology
    • /
    • v.41 no.8
    • /
    • pp.1079-1086
    • /
    • 2009
  • A great volume of radioactive concrete is generated during the operation and the decommissioning of nuclear facilities. The washing-electrokinetic technology in this study, which combined an electrokinetic method and a washing method, was developed to decontaminate the concrete generated in nuclear facilities. The results of only an electrokinetic decontamination for the concrete showed that cobalt was removed to below 1% from the concrete due to its high pH. Therefore, the washing-electrokinetic technology was applied to lower the pH of the concrete. Namely, when the concrete was washed with 3 M of hydrochloric acid for 4 hours (0.17 day), the $CaCO_3$ in the concrete was decomposed into $CO_2$ and the pH of the concrete was reduced to 3.7, and the cobalt and cesium in the concrete were removed by up to 85.0% and 76.3% respectively. Next, when the washed concrete was decontaminated by the electrokinetic method with 0.01M of acetic acid in the 1L electrokinetic equipment for 14.83 days, the cobalt and the cesium in the concrete were both removed by up to 99.7% and 99.6% respectively. The removal efficiencies of the cobalt and cesium by 0.01M of acetic acid were increased more than those by 0.05M of acetic acid due to the increase of the concrete zeta potential. The total effluent volume generated from the washing-electrokinetic decontamination was 11.55L (7.2ml/g).

EVALUATION OF A PENETRATION-REINFORCING AGENT TO PREVENT THE AGING OF CONCRETE

  • Cho, Myung-Sug;Noh, Jea-Myoung;Song, Young-Chul
    • Nuclear Engineering and Technology
    • /
    • v.41 no.8
    • /
    • pp.1127-1134
    • /
    • 2009
  • Concrete has three major properties after a penetration-reinforcing agent is applied on its surface. First, the durability is improved by the sol-gel process of synthesized material from the polycondensation of TEOS (tetra-ethoxyorthosilicate) and acrylate monomer. Second, the capability to absorb impact energy is reinforced through the formation of a soft and flexible layer of organic monomers by Tea (Tetra Ethyl Amin). Third, the capability to prevent deterioration is enhanced by adding isobutyl-orthosilicate and alcohol. The performance and application of an agent developed through the synthesis of organic and inorganic material in an effort to prevent concrete from deterioration and improve the durability of concrete structures were verified in diverse experiments. The results of these experiments showed that the application of the proposed penetration-reinforcing agent has the effect of increasing the compressive strength by filling up the internal pores of concrete with physically and chemically stable compounds after penetrating the concrete. It also improves the durability against the deterioration factors such as salt water damage, carbonation, freezing and thawing, and compound deterioration. Therefore, it is confirmed that the penetration-reinforcing agent is a useful substance for the management and repair of concrete structures.

Damage Monitoring of Concrete With Acoustic Emission Method for Nuclear Waste Storage: Effect of Temperature and Water Immersion

  • Park, June-Ho;Kwon, Tae-Hyuk;Han, Gyeol;Kim, Jin-Seop;Hong, Chang-Ho;Lee, Hang-Lo
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.20 no.3
    • /
    • pp.297-306
    • /
    • 2022
  • The acoustic emission (AE) is proposed as a feasible method for the real-time monitoring of the structural damage evolution in concrete materials that are typically used in the storage of nuclear wastes. However, the characteristics of AE signals emitted from concrete structures subjected to various environmental conditions are poorly identified. Therefore, this study examines the AE characteristics of the concrete structures during uniaxial compression, where the storage temperature and immersion conditions of the concrete specimens varied from 15℃ to 75℃ and from completely dry to water-immersion, respectively. Compared with the dry specimens, the water-immersed specimens exhibited significantly reduced uniaxial compressive strengths by approximately 26%, total AE energy by approximately 90%, and max RA value by approximately 70%. As the treatment temperature increased, the strength and AE parameters, such as AE count, AE energy, and RA value, of the dry specimens increased; however, the temperature effect was only minimal for the immersed specimens. This study suggests that the AE technique can capture the mechanical damage evolution of concrete materials, but their AE characteristics can vary with respect to the storage conditions.