• Title/Summary/Keyword: nozzle path

Search Result 51, Processing Time 0.019 seconds

The first private-hospital based proton therapy center in Korea; status of the Proton Therapy Center at Samsung Medical Center

  • Chung, Kwangzoo;Han, Youngyih;Kim, Jinsung;Ahn, Sung Hwan;Ju, Sang Gyu;Jung, Sang Hoon;Chung, Yoonsun;Cho, Sungkoo;Jo, Kwanghyun;Shin, Eun Hyuk;Hong, Chae-Seon;Shin, Jung Suk;Park, Seyjoon;Kim, Dae-Hyun;Kim, Hye Young;Lee, Boram;Shibagaki, Gantaro;Nonaka, Hideki;Sasai, Kenzo;Koyabu, Yukio;Choi, Changhoon;Huh, Seung Jae;Ahn, Yong Chan;Pyo, Hong Ryull;Lim, Do Hoon;Park, Hee Chul;Park, Won;Oh, Dong Ryul;Noh, Jae Myung;Yu, Jeong Il;Song, Sanghyuk;Lee, Ji Eun;Lee, Bomi;Choi, Doo Ho
    • Radiation Oncology Journal
    • /
    • v.33 no.4
    • /
    • pp.337-343
    • /
    • 2015
  • Purpose: The purpose of this report is to describe the proton therapy system at Samsung Medical Center (SMC-PTS) including the proton beam generator, irradiation system, patient positioning system, patient position verification system, respiratory gating system, and operating and safety control system, and review the current status of the SMC-PTS. Materials and Methods: The SMC-PTS has a cyclotron (230 MeV) and two treatment rooms: one treatment room is equipped with a multi-purpose nozzle and the other treatment room is equipped with a dedicated pencil beam scanning nozzle. The proton beam generator including the cyclotron and the energy selection system can lower the energy of protons down to 70 MeV from the maximum 230 MeV. Results: The multi-purpose nozzle can deliver both wobbling proton beam and active scanning proton beam, and a multi-leaf collimator has been installed in the downstream of the nozzle. The dedicated scanning nozzle can deliver active scanning proton beam with a helium gas filled pipe minimizing unnecessary interactions with the air in the beam path. The equipment was provided by Sumitomo Heavy Industries Ltd., RayStation from RaySearch Laboratories AB is the selected treatment planning system, and data management will be handled by the MOSAIQ system from Elekta AB. Conclusion: The SMC-PTS located in Seoul, Korea, is scheduled to begin treating cancer patients in 2015.

CAD Based Robot Off-line Programming for Shoe Adhesive Application System (신발 접착제 도포 시스템을 위한 CAD 기반 로봇 오프라인 프로그래밍)

  • 윤중선;차동혁;김진영
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.7
    • /
    • pp.643-648
    • /
    • 2004
  • Most of shoes manufacturing processes are not yet automated, which puts restrictions on the increase of productivity. Among them, adhesive application processes particularly are holding the most workers and working hours. In addition, its working conditions are very poor due to the toxicity of adhesive agents. In case of automating adhesive application processes by using robots, the robot teaching by playback is difficult to produce high productivity because the kinds of shoes to be taught mount up to several thousands. Therefore, it is essential to generate the robot working paths automatically according to the kind, the size, and the right and left of shoes, and also to teach them to the robot automatically. This study deals with automated adhesive spraying to shoe outsoles and uppers by using a robot, and develops the program to generate three-dimensional robot working paths off-line based on CAD data. First, the three-dimensional data of an outsole outline or an upper profiling line are extracted from the two-dimensional CAD drawing file or the three-dimensional scanner. Next, based on the extracted data and the nozzle conditions for adhesive spraying, a robot working path is generated automatically. This research work is the core in automating adhesive spraying processes, and will do much for increasing productivity of shoes manufacturing.

Internal Flow Dynamics and Performance of Valveless Airbreathing Pulse Detonation Engine (무-밸브 공기흡입 펄스데토네이션 엔진의 내부 유동과 성능)

  • Ma Fuhua;Choi J.Y.;Yang Vigor
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2006.05a
    • /
    • pp.367-370
    • /
    • 2006
  • This paper deals with the modeling and simulation of the internal flowfield in a valveless airbreathing pulse detonation engine (PDE) currently under experimental development at the U.S. Naval Postgraduate School. The system involves no valves in the airflow path, and the isolation between the inlet and combustor is achieved through the gasdynamics in an isolator. The analysis accommodates the full conservation equations in axisymmetric coordinates, and takes into account variable properties for ethylene/oxygen/air system. Chemical reaction schemes with a single progress variable are implemented to minimize the computational burden. Detailed flow evolution during a full cycle is explored and propulsive performance is calculated. Effect of initiator mass injection rate is examined and results indicate that the mass injection rate should be carefully selected to avoid the formation of recirculation zones in the initial cold flowfield. Flow evolution results demonstrate a successful detonation transmission from the initiator to the combustor. However, strong pressure disturbance may propagate upstream to the inlet nozzle, suggesting the current configuration could be further refined to provide more efficient isolation between the inlet and combustor.

  • PDF

Numerical Evaluation of charged Liquid Particle′s Behavior in Fluid Flow and Electric Field and The Electric Effect on the Particle Dispersion (유동과 전기장 내에서의 액체입자의 거동과 전기장이 입자의 산란에 미치는 영향에 관한 수치적 연구)

  • Kim, Hyeong-Min
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.4
    • /
    • pp.570-577
    • /
    • 2002
  • Charged liquid particle's behavior in electric and flow field was simulated to define the effect of electric field on the contact area and its dispersion. For the simulation of flow and electric field finite volume method was applied. To find out the particle's moving path in that field lagrangian equation of motion was solved by Runge-Kutta methods. We assumed that the particle was charged 10% of Rayleigh limit while the particle passing through the electrode and the particle does not have an effect on the electric field. In case of 30[Kv] of voltage charging the particles injected from the central 60% of the nozzle injection area adhere to the grounded moving plate and no dispersion occurred. Increasing the charged voltage to 40[Kv], it brought about the same phenomena as that of 30[Kv] charging except the dispersion. Voltage increasing from 30[Kv] to 40 [Kv] caused higher Coulomb force acts on the particle and it made the particle dispersion.

YGN 3 & 4 Reactor Flow Model Test (영광 3, 4호기 원자로 유동 모델 시험)

  • Lee, Kye-Bock;Im, In-Young;Lee, Byung-Jin;Kuh, Jung-Eui
    • Nuclear Engineering and Technology
    • /
    • v.23 no.3
    • /
    • pp.340-351
    • /
    • 1991
  • Experimental studies were conducted on a l/5.03 scale reactor flow model of the Yong-gwang Nuclear Units 3 and 4. The purpose of the flow model test was to estimate the hydraulic effect in the reactor vessel due to the relative size difference between the ABB-CE's System 80 and the YGN 3&4 reactors. The flow model was designed according to the principle of similarity. Obtained from the test were the core inlet flow distribution, the core exit pressure deviations, and the segmental and overall pressure losses across the flow path from the reactor vessel inlet to outlet nozzle. These data will be used to provide input data for the core thermal margin analysis and to verify the analytical hydraulic design method.

  • PDF

Numerical analysis of NOx formation characteristics in CH$_{4}$-air jet diffusion flame (CH$_{4}$-공기 분류 확산화염의 NOx 생성특성에 관한 수치해석)

  • O, Chang-Bo;Lee, Chang-Eon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.2
    • /
    • pp.193-204
    • /
    • 1998
  • Numerical analysis was performed with multicomponent transport properties and detailed reaction mechanisms for axisymmetric 2-D CH$_{4}$ jet diffusion flame. Calculations were carried out twice with the $C_{2}$-Thermal Mechanism including $C_{2}$ and thermal NO reactions and the $C_{2}$-Full Mechanism including prompt NO reactions in addition to the above $C_{2}$-Thermal NO mechanism. The results show that the flame structures such as flame temperature, major and minor species concentration are indifferent to respective mechanisms. The production path of Thermal NO is dominant comparing with that of Prompt NO in total NO production of pure CH$_{4}$ jet diffusion flame. This is because thermal NO mechanism mainly contributes to positive formation of NO in the whole flame region, but Prompt NO mechanism contributes to negative formation in the fuel rich region. In addition, 0$_{2}$ penetration near the nozzle outlet affects the flame structures, especially N0$_{2}$ formation characteristics.

A Study on Tensile Strength Dependent on Variation of Infill Pattern and Density of PLA+ Material Using 3D Printing (3D 프린팅을 이용한 P LA+ 소재의 채움 패턴 및 밀도 변화에 따른 인장강도 연구)

  • Na, D.H.;Kim, H.J.
    • Transactions of Materials Processing
    • /
    • v.31 no.5
    • /
    • pp.281-289
    • /
    • 2022
  • Presently, 3D printers manufactured by material extrusion are economical and easy to use, so they are being used in various fields. However, this study conducted a tensile test on the infill pattern and density of the PLA+ material, due to the limitations of long printing time as well as low mechanical strength. The infill area for the infill density change was measured, using a vision-measuring machine for four infill patterns (concentric, zigzag, honeycomb, and cross) in which the nozzle path was the same for each layer. The tensile strength/weight[MPa/g] and tensile strength/printing time[MPa/min] of the tensile specimens were analyzed. In this study, efficient infill density and patterns are suggested, for cost reduction and productivity improvement. Consequently, it was confirmed that the infill area and infill percentage of the four patterns, were not constant according to the infill pattern. And the tensile strength of the infill density 40% of the honeycomb pattern and infill density 20% of the cross pattern, tended to highly consider the weight and printing time. Honeycomb and cross patterns could reduce the weight of the tensile specimen by 19.11%, 28.07%, as well as the printing time by 29.56%, 52.25%. Tensile strength was high in the order of concentric, zigzag, honeycomb, and cross patterns, considering the weight and printing time.

Design of the miniature Joule-Thomson refrigerator as a cryoprobe (저온 수술 프로브용 소형 Joule-Thomson 냉동기의 설계)

  • Hwang, Gyu-Wan;Jeong, Sang-Kwon;In, Se-Hwan
    • Progress in Superconductivity and Cryogenics
    • /
    • v.9 no.1
    • /
    • pp.86-90
    • /
    • 2007
  • The cryoprobe used in cryosurgery should be fabricated in milimeter-order size for its practical usage. In general a miniature J-T(Joule-Thomson) refrigerator is applied to a cryoprobe. In case of the miniature J-T refrigerator, the mass flow rate of working fluid is small due to considerable friction in a minute flow path. For that reason, the miniature J-T refrigerator has a limited cooling power. To obtain the large cooling power from the J-T refrigerator, the refrigerator should have large mass flow rate and effective J-T temperature drop. These quantities are closely related to the geometry of the heat exchanger and the expansion nozzle in a cryoprobe, and are contradictory. The large mass flow rate leads to the small J-T temperature drop and vice versa in the miniature J-T refrigerator. Therefore, the optimal design of a cryoprobe to achieve maximum cooling power at fixed tube size and fixed operating temperature is required. This paper presents the design procedure of such case.

Investigating the effects of a range shifter on skin dose in proton therapy

  • Ming Wang;Lei Zhang;Jinxing Zheng;Guodong Li;Wei Dai;Lang Dong
    • Nuclear Engineering and Technology
    • /
    • v.55 no.1
    • /
    • pp.215-221
    • /
    • 2023
  • Proton treatment may deliver a larger dose to a patient's skin than traditional photon therapy, especially when a range shifter (RS) is inserted in the beam path. This study investigated the effects of an RS on skin dose while considering RS with different thicknesses, airgaps and materials. First, the physical model of the scanning nozzle with RS was established in the TOol for PArticle Simulation (TOPAS) code, and the effects of the RS on the skin dose were studied. Second, the variations in the skin dose and isocenter beam size were examined by reducing the air gap. Finally, the effects of different RS materials, such as polymethylmethacrylate (PMMA), Lexan, polyethylene and polystyrene, on the skin dose were analysed. The results demonstrated that the current RS design had a negligible effect on the skin dose, whereas the RS significantly impacted the isocenter beam size. The skin dose was increased considerably when the RS was placed close to the phantom. Moreover, the magnitude of the increase was related to the thickness of the inserted RS. Meanwhile, the results also revealed that the secondary proton primarily contributed to the increased skin dose.

Experimental study of turbulent flow in a scaled RPV model by PIV technology

  • Luguo Liu;Wenhai Qu;Yu Liu;Jinbiao Xiong;Songwei Li;Guangming Jiang
    • Nuclear Engineering and Technology
    • /
    • v.56 no.7
    • /
    • pp.2458-2473
    • /
    • 2024
  • The turbulent flow in reactor pressure vessel (RPV) of pressurized water reactor (PWR) is important for the flow rate distribution at core inlet. Thus, it is vital to study the turbulent flow phenomena in RPV. However, the complicated fluid channel consisted of inner structures of RPV will block or refract the laser sheet of particle image velocimetry (PIV). In this work, the matched index of refraction (MIR) of sodium iodide (NaI) solution and acrylic was applied to support optical path for flow field measurements by PIV in the 1/10th scaled-down RPV model. The experimental results show detailed velocity field at different locations inside the scaled-down RPV model. Some interesting phenomena are obtained, including the non-negligible counterflow at the corner of nozzle edge, the high downward flowing stream in downcomer, large vortices above vortex suppression plate in lower plenum. And the intensity of counterflow and the strength of vortices increase as inlet flow rate increasing. Finally, the case of asymmetry flow was also studied. The turbulent flow has different pattern compared with the case of symmetrical inlet flow rate, which may affect the uniformity of flow distribution at the core inlet.