• Title/Summary/Keyword: nowcasting

Search Result 33, Processing Time 0.035 seconds

Proposal an Alternative Data Pipeline to Secure the Timeliness for Official Statistical Indicators (공식발표 통계지표의 적시성 확보를 위한 대안 데이터 파이프라인 구축제안)

  • Yongbok Cho;Dowan Kim
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.28 no.5
    • /
    • pp.89-108
    • /
    • 2023
  • This study provides a comprehensive analysis of recent studies conducted on the topic of nowcasting in order to enhance the accuracy and promptness of official statistical data. Furthermore, we propose an alternative approach involving the utilization of real-time data and its corresponding collection methods to effectively operate a real-time nowcasting model capable of accurately capturing the current economic condition. We explore high-frequency real-time data that can predict economic indicators in both the public and private sectors and propose a pipeline for data collection processing and modeling that is based on cloud platforms. Furthermore we validate the essential elements required for the implementation of real-time nowcasting, as well as their data management protocols to ensure the reliability and consistency needed for accurate forecasting of official statistical indicators.

Construction of a Spatio-Temporal Dataset for Deep Learning-Based Precipitation Nowcasting

  • Kim, Wonsu;Jang, Dongmin;Park, Sung Won;Yang, MyungSeok
    • Journal of Information Science Theory and Practice
    • /
    • v.10 no.spc
    • /
    • pp.135-142
    • /
    • 2022
  • Recently, with the development of data processing technology and the increase of computational power, methods to solving social problems using Artificial Intelligence (AI) are in the spotlight, and AI technologies are replacing and supplementing existing traditional methods in various fields. Meanwhile in Korea, heavy rain is one of the representative factors of natural disasters that cause enormous economic damage and casualties every year. Accurate prediction of heavy rainfall over the Korean peninsula is very difficult due to its geographical features, located between the Eurasian continent and the Pacific Ocean at mid-latitude, and the influence of the summer monsoon. In order to deal with such problems, the Korea Meteorological Administration operates various state-of-the-art observation equipment and a newly developed global atmospheric model system. Nevertheless, for precipitation nowcasting, the use of a separate system based on the extrapolation method is required due to the intrinsic characteristics associated with the operation of numerical weather prediction models. The predictability of existing precipitation nowcasting is reliable in the early stage of forecasting but decreases sharply as forecast lead time increases. At this point, AI technologies to deal with spatio-temporal features of data are expected to greatly contribute to overcoming the limitations of existing precipitation nowcasting systems. Thus, in this project the dataset required to develop, train, and verify deep learning-based precipitation nowcasting models has been constructed in a regularized form. The dataset not only provides various variables obtained from multiple sources, but also coincides with each other in spatio-temporal specifications.

Characteristics of Summer Season Precipitation Motion over Jeju Island Region Using Variational Echo Tracking (변분에코추적법을 이용한 제주도 지역 여름철 강수계의 이동 특성 분석)

  • Kim, Kwonil;Lee, Ho-Woo;Jung, Sung-Hwa;Lyu, Geunsu;Lee, GyuWon
    • Atmosphere
    • /
    • v.28 no.4
    • /
    • pp.443-455
    • /
    • 2018
  • Nowcasting algorithms using weather radar data are mostly based on extrapolating the radar echoes. We estimate the echo motion vectors that are used to extrapolate the echo properly. Therefore, understanding the general characteristics of these motion vectors is important to improve the performance of nowcasting. General characteristics of radar-based motions are analyzed for warm season precipitation over Jeju region. Three-year summer season data (June~August, 2011~2013) from two radars (GSN, SSP) in Jeju are used to obtain echo motion vectors that are retrieved by Variational Echo Tracking (VET) method which is widely used in nowcasting. The highest frequency occurs in precipitation motion toward east-northeast with the speed of $15{\sim}16m\;s^{-1}$ during the warm season. Precipitation system moves faster and eastward in June-July while it moves slower and northeastward in August. The maximum frequency of speed appears in $10{\sim}20m\;s^{-1}$ and $5{\sim}10m\;s^{-1}$ in June~July and August respectively while average speed is about $14{\sim}15m\;s^{-1}$ in June~July and $8m\;s^{-1}$ in August. In addition, the direction of precipitation motion is highly variable in time in August. The speed of motion in Lee side of the island is smaller than that of the windward side.

Development of Convective Cell Identification and Tracking Algorithm using 3-Dimensional Radar Reflectivity Fields (3차원 레이더 반사도를 이용한 대류세포 판별과 추적 알고리즘의 개발)

  • Jung, Sung-Hwa;Lee, GyuWon;Kim, Hyung-Woo;Kuk, BongJae
    • Atmosphere
    • /
    • v.21 no.3
    • /
    • pp.243-256
    • /
    • 2011
  • This paper presents the development of new algorithm for identifying and tracking the convective cells in three dimensional reflectivity fields in Cartesian coordinates. First, the radar volume data in spherical coordinate system has been converted into Cartesian coordinate system by the bilinear interpolation. The three-dimensional convective cell has then been identified as a group of spatially consecutive grid points using reflectivity and volume thresholds. The tracking algorithm utilizes a fuzzy logic with four membership functions and their weights. The four fuzzy parameters of speed, area change ratio, reflectivity change ratio, and axis transformation ratio have been newly defined. In order to make their membership functions, the normalized frequency distributions are calculated using the pairs of manually matched cells in the consecutive radar reflectivity fields. The algorithms have been verified for two convective events in summer season. Results show that the algorithms have properly identified storm cells and tracked the same cells successively. The developed algorithms may provide useful short-term forecasting or nowcasting capability of convective storm cells and provide the statistical characteristics of severe weather.

Analysis of Regional-Scale Weather Model Applicabilities for the Enforcement of Flood Risk Reduction (홍수피해 감소를 위한 지역규모 기상모델의 적용성 분석)

  • Jung, Yong;Baek, JongJin;Choi, Minha
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.5B
    • /
    • pp.267-272
    • /
    • 2012
  • To reduce the flood risk caused by unexpected heavy rainfall, many prediction methods for flood have been developed. A major constituent of flood prediction is an accurate rainfall estimation which is an input of hydrologic models. In this study, a regional-scale weather model which can provide relatively longer lead time for flood mitigation compared to the Nowcasting based on radar system will be introduced and applied to the Chongmi river basin located in central part of South Korea. The duration of application of a regional weather model is from July 11 to July 23 in 2006. The estimated rainfall amounts were compared with observations from rain gauges (Sangkeuk, Samjook, and Sulsung). For this rainfall event at Chongmi river basin, Thomson and Kain-Frisch Schemes for microphysics and cumulus parameterization, respectively, were selected as optimal physical conditions to present rainfall fall amount in terms of Mean Absolute Relative Errors (MARE>0.45).

A Comparative Study of the Rainfall Intensity Between Ground Rain Gauge and Weather Radar (지상우량계와 기상레이더 강우강도의 비교연구)

  • Ryu, Chan-Su;Kang, In-Sook;Lim, Jae-Hwan
    • Journal of Integrative Natural Science
    • /
    • v.4 no.3
    • /
    • pp.229-237
    • /
    • 2011
  • Today they use a weather radar with spatially high resolution in predicting rainfall intensity and utilizing the information for super short-range forecast in order to make predictions of such severe meteorological phenomena as heavy rainfall and snow. For a weather radar, they use the Z-R relation between the reflectivity factor(Z) and rainfall intensity(R) by rainfall particles in the atmosphere in order to estimate intensity. Most used among the various Z-R relation is $Z=200R^{1.6}$ applied to stratiform rain. It's also used to estimate basic rainfall intensity of a weather radar run by the weather center. This study set out to compare rainfall intensity between the reflectivity of a weather radar and the ground rainfall of ASOS(Automatic Surface Observation System) by analyzing many different cases of heavy rain, analyze the errors of different weather radars and identify their problems, and investigate their applicability to nowcasting in case of severe weather.

MTSAT Satellite Image Features on the Sever Storm Events in Yeongdong Region (영동지역 악기상 사례에 대한 MTSAT 위성 영상의 특징)

  • Kim, In-Hye;Kwon, Tae-Yong;Kim, Deok-Rae
    • Atmosphere
    • /
    • v.22 no.1
    • /
    • pp.29-45
    • /
    • 2012
  • An unusual autumn storm developed rapidly in the western part of the East sea on the early morning of 23 October 2006. This storm produced a record-breaking heavy rain and strong wind in the northern and middle part of the Yeong-dong region; 24-h rainfall of 304 mm over Gangneung and wind speed exceeding 63.7 m $s^{-1}$ over Sokcho. In this study, MTSAT-1R (Multi-fuctional Transport Satellite) water vapor and infrared channel imagery are examined to find out some features which are dynamically associated with the development of the storm. These features may be the precursor signals of the rapidly developing storm and can be employed for very short range forecast and nowcasting of severe storm. The satellite features are summarized: 1) MTSAT-1R Water Vapor imagery exhibited that distinct dark region develops over the Yellow sea at about 12 hours before the occurrence of maximum rainfall about 1100 KST on 23 October 2006. After then, it changes gradually into dry intrusion. This dark region in the water vapor image is closely related with the positive anomaly in 500 hPa Potential Vorticity field. 2) In the Infrared imagery, low stratus (brightness temperature: $0{\sim}5^{\circ}C$) develops from near Bo-Hai bay and Shanfung peninsula and then dissipates partially on the western coast of Korean peninsula. These features are found at 10~12 hours before the maximum rainfall occurrence, which are associated with the cold and warm advection in the lower troposphere. 3) The IR imagery reveals that two convective cloud cells (brightness temperature below $-50^{\circ}C$) merge each other and after merging it grows up rapidly over the western part of East sea at about 5 hours before the maximum rainfall occurrence. These features remind that there must be the upward flow in the upper troposphere and the low-layer convergence over the same region of East sea. The time of maximum growth of the convective cloud agrees well with the time of the maximum rainfall.

The Development of Travel Demand Nowcasting Model Based on Travelers' Attention: Focusing on Web Search Traffic Information (여행자 관심 기반 스마트 여행 수요 예측 모형 개발: 웹검색 트래픽 정보를 중심으로)

  • Park, Do-Hyung
    • The Journal of Information Systems
    • /
    • v.26 no.3
    • /
    • pp.171-185
    • /
    • 2017
  • Purpose Recently, there has been an increase in attempts to analyze social phenomena, consumption trends, and consumption behavior through a vast amount of customer data such as web search traffic information and social buzz information in various fields such as flu prediction and real estate price prediction. Internet portal service providers such as google and naver are disclosing web search traffic information of online users as services such as google trends and naver trends. Academic and industry are paying attention to research on information search behavior and utilization of online users based on the web search traffic information. Although there are many studies predicting social phenomena, consumption trends, political polls, etc. based on web search traffic information, it is hard to find the research to explain and predict tourism demand and establish tourism policy using it. In this study, we try to use web search traffic information to explain the tourism demand for major cities in Gangwon-do, the representative tourist area in Korea, and to develop a nowcasting model for the demand. Design/methodology/approach In the first step, the literature review on travel demand and web search traffic was conducted in parallel in two directions. In the second stage, we conducted a qualitative research to confirm the information retrieval behavior of the traveler. In the next step, we extracted the representative tourist cities of Gangwon-do and confirmed which keywords were used for the search. In the fourth step, we collected tourist demand data to be used as a dependent variable and collected web search traffic information of each keyword to be used as an independent variable. In the fifth step, we set up a time series benchmark model, and added the web search traffic information to this model to confirm whether the prediction model improved. In the last stage, we analyze the prediction models that are finally selected as optimal and confirm whether the influence of the keywords on the prediction of travel demand. Findings This study has developed a tourism demand forecasting model of Gangwon-do, a representative tourist destination in Korea, by expanding and applying web search traffic information to tourism demand forecasting. We compared the existing time series model with the benchmarking model and confirmed the superiority of the proposed model. In addition, this study also confirms that web search traffic information has a positive correlation with travel demand and precedes it by one or two months, thereby asserting its suitability as a prediction model. Furthermore, by deriving search keywords that have a significant effect on tourism demand forecast for each city, representative characteristics of each region can be selected.

Inflow Estimation into Chungju Reservoir Using RADAR Forecasted Precipitation Data and ANFIS (RADAR 강우예측자료와 ANFIS를 이용한 충주댐 유입량 예측)

  • Choi, Changwon;Yi, Jaeeung
    • Journal of Korea Water Resources Association
    • /
    • v.46 no.8
    • /
    • pp.857-871
    • /
    • 2013
  • The interest in rainfall observation and forecasting using remote sensing method like RADAR (Radio Detection and Ranging) and satellite image is increased according to increased damage by rapid weather change like regional torrential rain and flash flood. In this study, the basin runoff was calculated using adaptive neuro-fuzzy technique, one of the data driven model and MAPLE (McGill Algorithm for Precipitation Nowcasting by Lagrangian Extrapolation) forecasted precipitation data as one of the input variables. The flood estimation method using neuro-fuzzy technique and RADAR forecasted precipitation data was evaluated. Six rainfall events occurred at flood season in 2010 and 2011 in Chungju Reservoir basin were used for the input data. The flood estimation results according to the rainfall data used as training, checking and testing data in the model setup process were compared. The 15 models were composed of combination of the input variables and the results according to change of clustering methods were compared and analysed. From this study was that using the relatively larger clustering radius and the biggest flood ever happened for training data showed the better flood estimation. The model using MAPLE forecasted precipitation data showed relatively better result at inflow estimation Chungju Reservoir.

A Suggestion for Data Assimilation Method of Hydrometeor Types Estimated from the Polarimetric Radar Observation

  • Yamaguchi, Kosei;Nakakita, Eiichi;Sumida, Yasuhiko
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2009.05a
    • /
    • pp.2161-2166
    • /
    • 2009
  • It is important for 0-6 hour nowcasting to provide for a high-quality initial condition in a meso-scale atmospheric model by a data assimilation of several observation data. The polarimetric radar data is expected to be assimilated into the forecast model, because the radar has a possibility of measurements of the types, the shapes, and the size distributions of hydrometeors. In this paper, an impact on rainfall prediction of the data assimilation of hydrometeor types (i.e. raindrop, graupel, snowflake, etc.) is evaluated. The observed information of hydrometeor types is estimated using the fuzzy logic algorism. As an implementation, the cloud-resolving nonhydrostatic atmospheric model, CReSS, which has detail microphysical processes, is employed as a forecast model. The local ensemble transform Kalman filter, LETKF, is used as a data assimilation method, which uses an ensemble of short-term forecasts to estimate the flowdependent background error covariance required in data assimilation. A heavy rainfall event occurred in Okinawa in 2008 is chosen as an application. As a result, the rainfall prediction accuracy in the assimilation case of both hydrometeor types and the Doppler velocity and the radar echo is improved by a comparison of the no assimilation case. The effects on rainfall prediction of the assimilation of hydrometeor types appear in longer prediction lead time compared with the effects of the assimilation of radar echo only.

  • PDF