References
- 권태영, 2001: GMS-5 IR1 밝기온도와 AWS 강우량의 관계성; 1998년 8월중서부지역집중호우사례. 대한원격탐사학회지, 17(1), 15-31.
-
오재호, 홍성길, 1995: 대기 중
$CO_2$ 증가에 따른 한반도 강수량 변화. 한국수자원학회지, 28(3), 143-157. - 조구희, 2008: 개념 모델을 통한 영동지역의 겨울철 지형성 강수에 대한 통계적 예보. 강릉대학교 대학원 박사학위논문, 143 pp.
- Adler, R. F., and D. D. Fenn, 1981: Satellite-observed cloudtop height changes in tornadic thunderstorms. J. Appl. Meteor., 20, 1369-1375. https://doi.org/10.1175/1520-0450(1981)020<1369:SOCTHC>2.0.CO;2
- Adler, R. F., and A. J. Negri, 1987: A satellite infrared technique to estimate tropical convective and stratiform rainfall. J. Appl. Meteor., 27, 30-51.
- Barrett, E. C., and D. W. Martin, 1981: The use of satellite data in rainfall monitoring. Academic Press, 340 pp.
- Baum, B. A., V. Tovinkere, J. Titlow, and R. M. Welch, 1997: Automated cloud classification of global AVHRR data using a fuzzy logic approach. J. Appl. Meteor., 36, 1519-1540. https://doi.org/10.1175/1520-0450(1997)036<1519:ACCOGA>2.0.CO;2
- Bellerby, T. J., and J. Sun, 2005: Probabilistic and Ensemble Representations of the Uncertainty in an IR/Microwave Satellite Precipitation Product. J. Hydrol., 6, 1032-1044.
- Delgado, G., L. A. T. Machado, C. F. Angelis, M. J. Bottino, A. Redao, J. Lorente, L. Gimeno, and R. Nieto, 2007: Basis for a rainfall estimation technique using IR-VIS cloud classification and parameters over the life cycle of mesoscale convective systems. J. Appl. Meteor. Climal., 47, 1500-1517.
- Demirtas, M., and A. J. Thorpe, 1999: Sensitivity of shortrange weather forecasts to local potential vorticity modifications. Mon. Wea. Rev., 127, 922-939. https://doi.org/10.1175/1520-0493(1999)127<0922:SOSRWF>2.0.CO;2
- Georgiev, C. G., 1999: Quantitative relationship between meteosat WV data and positive potential vorticity anomalies: a case study over the mediterranean. Meteorol. Appl., 6, 97-109. https://doi.org/10.1017/S1350482799001024
- Gordon, H. B., P. H. Whetton, A. B. Pittok, A. M. Fowler and M. R. Haylock, 1992: Simulated changes in daily rainfall intensity due to the enhanced greenhouse effect: implications for extreme rainfall events. Climate Dyn., 8, 83-102. https://doi.org/10.1007/BF00209165
- Griffith, C. G., W. L. Woodley, P. G. Grube, D. W. Martin, J. stout, and D. N. Sikdar, 1978: Rain estimation from geosynchronous satellite imagery-visible and infrared studies. Mon. Wea. Rev., 106, 1153-1171. https://doi.org/10.1175/1520-0493(1978)106<1153:REFGSI>2.0.CO;2
- Hanley, D. E., 2002: The evolution of a hurricane-trough interaction from a satellite perspective. Wea. Forecasting, 17, 916-926. https://doi.org/10.1175/1520-0434(2002)017<0916:TEOAHT>2.0.CO;2
- Hong, Y., 2004: Precipitation estimation from remotely sensed imagery using an artificial neural network cloud classification system. J. Appl. Meteor., 43, 1834-1852. https://doi.org/10.1175/JAM2173.1
- Hoskins, B. J., M. E. Mclntyre, and A. W. Robertson, 1985: On the use and significance of isentropic potential vorticity maps. Q. J. R. Meteorol. Soc., 111, 877-946. https://doi.org/10.1002/qj.49711147002
- Huo, Z., D.-L. Zhang, and J. Gyakum, 1998: An application of potential vorticity inversion to improving the numerical prediction of the march 1993 superstorm. Mon. Wea. Rev., 126, 424-436. https://doi.org/10.1175/1520-0493(1998)126<0424:AAOPVI>2.0.CO;2
- Kidd, C., D. R. Kniveton, M. C. Todd, and T. J. Bellerby, 2003: Satellite rainfall estimation using a combined passive microwave and infrared algorithm. J. Hydrol., 4, 1088-1104.
- Kuligowski, R. J., 2002: A self-calibrating real-time GOES rainfall algorithm for short-term rainfall estimates. J. Hydrol., 3, 112-130.
- Kurz, M., 1994: The role of diagnostic tools in modern weather forecasting. Meteorol Appl., 1, 45-67.
- Levizzani, V., 1999: Convective rain from a satellite prospect: Achievements and challenges. SAF Training Workshop-Nowcasting and Very Short Forecasting. Madrid, 9-11 Dec., EUM P. 25, 75-84.
- Mansfield, D. A. 1996: the use of potential vorticity as an operational forecast tool. Meteorogl. Appl., 3, 195-210.
- Mecikalski, J. R., and K. M. Bedka, 2006: Forecasting convective initiation by monitoring the evolution of moving cumulus in daytime GOES imagery. Mon. Wea. Rev., 134, 49-78. https://doi.org/10.1175/MWR3062.1
- Pankiewicz, G. S., S. J. Swarbrick, and S. C. Watkin, 1999: Automatic estimation of potential vorticity from Meteosat water vapour imagery to adjust initial fields in NWP. In The 1999 Meteorological Satellite Data Users' Conference, EUM P, 26, ISSN 1011-3932, EUMETSAT, Lighthous Multimedia Darmstadt, 387-394.
- Roberts, N. M., and H. W. Lean, 2008: Scale-selective verification of rainfall accumulations from highresolution forecasts of convective events. Mon. Wea. Rev., 136, 78-97. https://doi.org/10.1175/2007MWR2123.1
- Scofield, R. A., 1987: The NESDIS operational convective precipitation estimation technique. Mon. Wea. Rev., 115, 1773-1792. https://doi.org/10.1175/1520-0493(1987)115<1773:TNOCPE>2.0.CO;2
- Swarbrick, S. J. 2001: Applying the relationship between potential vorticity fields and water vapour imagery to adjust initial conditions in NWP. Meteorol. Appl., 8. 221-228. https://doi.org/10.1017/S1350482701002109
- Turk, F. J., E. F. Ebert, H.-J. Oh, B.-J. Shon, V. Levizzani, E. A. Smith and R. R. Ferraro, 2003: Validation of an operational global precipitation analysis at short time scales. Prepr. 12th Conf. on Satellite Meteor. and Oceanography, Long Beach, CA, 9-13 Feb., paper 1.2, 21.
- Uccellini, L. W., D. Keyser, K. F. Brill, and C. H. Wash, 1985: The presidents' day cyclone of 18-19 February 1979: Influence of upstream trough amplification and associated tropopause folding on rapid cyclogenesis. Mon. Wea. Rev., 113, 962-988. https://doi.org/10.1175/1520-0493(1985)113<0962:TPDCOF>2.0.CO;2
- Uddstrom, M. J., and W. R. Gray, 1996: Satellite cloud classification and rain-rate estimation using multispectral radiances and measures of spatial texture. J. Appl. Meteor., 35, 839-858. https://doi.org/10.1175/1520-0450(1996)035<0839:SCCARR>2.0.CO;2
- Vincente, G. A., R. A. Scofield, and W. P. Menzel, 1998: The operational GOES infrared rainfall estimation technique. Bull. Amer. Meteor. Soc., 79, 1883-1898. https://doi.org/10.1175/1520-0477(1998)079<1883:TOGIRE>2.0.CO;2
-
Weckwerth, T. M., D. B. Parsons, S. E. Koch, J. A. Moore, M. A. Lemone, B. B. Demoz, C. Flamant, B. Geerts, J. Wang, and W. F. Feltz, 2004: An overview of the International
$H_2O$ Project (IHOP_2002) and some preliminary highlights. Bull. Amer. Meteor. Soc., 85, 253-277. https://doi.org/10.1175/BAMS-85-2-253 - Weldon, R. B., and S. J. Holmes, 1991: Water vapor imagery: interpretation and applications to weather analysis and forecasting. NOAA Tec. Rep. NESDIS 57, Washington D.C, 213 pp.
- Weng, F., L. Zhao, R. R. Ferraro, G. Poe, X. Li, and N. C. Grody, 2003: Advanced Microwave Sounding Unit cloud and precipitation algorithms. Radio Sci., 38, 8068-8079.
- Young, M. V., G. A. Monk, and K. A. Browning, 1987: Interpretation of satellite imagery of a deepening cyclone. Q. J. R. Meteorol. Soc., 113, 1089-1115.
Cited by
- Satellite Image Analysis of Convective Cell in the Chuseok Heavy Rain of 21 September 2010 vol.29, pp.4, 2013, https://doi.org/10.7780/kjrs.2013.29.4.8
- Characteristics of Infrared and Water Vapor Imagery for the Heavy Rainfall Occurred in the Korean Peninsula vol.30, pp.4, 2014, https://doi.org/10.7780/kjrs.2014.30.4.5
- Estimate and Analysis of Planetary Boundary Layer Height (PBLH) using a Mobile Lidar Vehicle system vol.32, pp.3, 2016, https://doi.org/10.7780/kjrs.2016.32.3.9
- Cloud-cell Tracking Analysis using Satellite Image of Extreme Heavy Snowfall in the Yeongdong Region vol.30, pp.1, 2014, https://doi.org/10.7780/kjrs.2014.30.1.8