• Title/Summary/Keyword: novel strains

Search Result 446, Processing Time 0.022 seconds

Prevalence of CTX-M-type Extended-Spectrum $\beta$-Lactamases Producing Escherichia coli and Klebsieilla pneumoniae Isolates in General Hospitals in 2005 (임상에서 분리된 CTX-M형 Extended-Spectrum $\beta$-Lactamases를 생산하는 Escherichia coli와 Klebsiella pneumoniae의 유행)

  • Kim, Yun-Tae;Kim, Tae-Un
    • Microbiology and Biotechnology Letters
    • /
    • v.34 no.4
    • /
    • pp.342-351
    • /
    • 2006
  • The aim of this study was to survey susceptibilities of Escherichia coli and Klebsiella pneumoniae isolates against cefotaxime and to determine the prevalences of CTX-M type extended-spectrum $\beta$-lactamases (ESBLs) producing E. coli and K. pneumoniae in Korea. During the period of February to July, 2005, 153 E. coli and 52 K. neumoniae isolates were collected from 2 hospitals in Busan. Antimicrobial susceptibilities to cefotaxime were tested by the disk diffusion method. ESBL production of E. coli and K. pneumoniae was determined by the double disk synergy test. MICs of $\beta$-lactam antibiotics were determined by the agar dilution method. Blac$_{CTX-M}$ genes of the organism were detected by PCR. Among 153 isolates of E. coli and 52 isolates of K. neumoniae, 27 (17.6%) and 25 (48.0%) were intermediate or resistant to cefotaxime, respectively. Twenty-three (15.0%) isolates out of 153 E. coli and 13 (25.0%) out of 52 K. neumoniae isolates showed positive results for ESBL by the double disk synergy test. Twenty isolates out of 23 ESBL producing E. coli and 12 out of 13 ESBL producing K. neumoniae isolates harbored biacTx-M gene,11 of ESBL producing E. coli and 12 of ESBL producing K. neuinoniae isolates harbored bla$_{CTX-M}$ gene, 11 of the ESBL producing E. coli and 2 of ESBL producing K. neumoniae isolates harbored bla$_{TEM}$ gene, and 1 of the ESBL producing E. coli and 12 of ESBL producing K. neumoniae isolates harbored bla$_{SHV}$ gene. E. coli and K. neumoniae isolates producing CTX-M-type ESBLs were not uncommon in Korea. It is thought that continuous survey are necessary for inspecting the spread and novel variants of CTX-M-type ESBL genes. Further me]'e investigation and research on ESBL producing strains are needed in order to prevent the spread of resistant bacteria.

Identification of Novel Psychrotolerant Bacterial Strain and Production of $\beta-Galactosidase$ (새로운 저온 내성세균의 동정과 $\beta-Galactosidase$ 생산)

  • Park, Jeong-Woon;Yoo, Jae-Soo;Roh, Dong-Hyun
    • Korean Journal of Microbiology
    • /
    • v.42 no.1
    • /
    • pp.40-46
    • /
    • 2006
  • Galactose joined to glucose by a $\beta(1\rightarrow4)$ glycosidic bond makes lactose and this disaccharide is rich in milk. It is known that lacotse is hydrolyzed to each monomeric sugar by either lactase in human or $\beta-galactosidase$ in bacteria. Ingestion of milk by lactase-deficient persons causes a temporary diarrhea and subsequent chronic diarrhea results in colitis with chronic inflammation. We isolated a $\beta-galactosidase$ producing psycrotolerant strain AS-20 from near cattle shed and investigated the growth at various temperature conditions. Whereas Escherichia coli strains did not grow at $10^{\circ}C$, the AS-20 strain could grow well at this low temperature and showed optimal growth at $30^{\circ}C$. The isolated strain was identified as 97% Hafnia alvei by biochemical properties. This strain could ferment glucose, lacotse, maltose, mannitol, xylose, ONPG, rhamanose and L-arabinose, and decarboxylate lysin and ornithine. To confirm the identity of isolated strain we amplified 16S rDNA by PCR and searched similarity of the 1426 bp DNA sequcence with Genbank database. The strain AS-20 showed 99% similarity with Hafnia alvei. The activity of $\beta-galactosidase$ was 1.5 times higher when the cell was grown at 10 or $20^{\circ}C$ than at $30^{\circ}C$. The highest enzyme activity of AS-20 was also much higher than that of E. coli, which was grown at $30^{\circ}C$.

Development of a Duplex RT-PCR Assay for the Simultaneous Detection and Discrimination of Avirulent and Virulent Newcastle Disease Virus (NDV) (뉴캣슬병 바이러스 검출 및 병원성 감별을 위한 Duplex RT-PCR법 개발)

  • Kim, Ji-Ye;Lee, Hyun-Jeong;Jang, Il;Lee, Hee-Soo;Yoon, Seung-Jun;Park, Ji-Sung;Seol, Jae-Goo;Kim, Seung-Han;Hong, Ji-Mu;Wang, Zillian;Liu, Hualei;Choi, Kang-Seuk
    • Korean Journal of Poultry Science
    • /
    • v.44 no.2
    • /
    • pp.93-102
    • /
    • 2017
  • A duplex RT-PCR (dRT-PCR) assay was developed for the simultaneous detection and discrimination of non-virulent and virulent Newcastle disease virus (NDV) in a single PCR tube. Primers targeting the large polymerase protein (L) gene and the fusion protein (F) gene of NDV were designed to detect all NDVs (by common type PCR primers) and virulent NDVs (by pathotype PCR primers), respectively and evaluated experimentally with reference NDV strains and other poultry viral pathogens. PCR products of the expected size of 386 bp were amplified from all NDV samples whereas PCR products of the expected size of 229 bp were amplified from virulent NDV samples alone. Cross reaction was not observed with other avian viral pathogens. The detection limit of NDV by the dRT-PCR was estimated to be $10^3$ 50% egg infectious dose/0.1 mL. In the dRT-PCR using field isolates of NDV, the pathotype PCR primers detected specifically all of virulent field isolates of NDV from Malaysia, Pakistan and China whereas common type PCR primers detected 94.4% (51/54) of field isolates of NDV from China. Three Chinese NDV isolates with false negative result were non-virulent viruses. Our results indicate that the dRT-PCR might provide a rapid and simple tool for rapid simultaneous detection and discrimination of non-virulent and virulent NDVs. Therefore the developed dRT-PCR assay provides a powerful novel means for the rapid diagnosis of Newcastle disease.

Paenibacillus kimchicus sp. nov., an antimicrobial bacterium isolated from Kimchi (김치로부터 분리된 항균 활성 세균 Paenibacillus kimchicus sp. nov.)

  • Park, A-rum;Oh, Ji-Sung;Roh, Dong-Hyun
    • Korean Journal of Microbiology
    • /
    • v.52 no.3
    • /
    • pp.319-326
    • /
    • 2016
  • An antimicrobial bacterium to pathogenic microorganisms, strain $W5-1^T$ was isolated from Korean fermented-food Kimchi. The isolate was Gram-staining-variable, strictly aerobic, rod-shaped, endospore-forming, and motile with peritrichous flagella. It grew at $15-40^{\circ}C$, at pH 6.0-10.0, and in the presence of 0-4% NaCl. Strain $W5-1^T$ could hydrolyze esculin and xylan, and assimilate $\small{D}$-mannose, but not $\small{D}$-mannitol. Strain $W5-1^T$ showed antimicrobial activity against Listeria monocytogens, Pseudomonas aeruginosa, Staphylococcus aureus, and Salmonella typhi. The G+C content of the DNA of strains $W5-1^T$ was 52.6 mol%. The predominant respiratory quinone was menaquinone-7 (MK-7) and the major cellular fatty acids were $C_{16:0}$, antieiso-$C_{15:0}$, $C_{18:0}$, and $C_{12:0}$. The strain contained meso-diaminopimelic acid in cell-wall peptidoglycan. On the basis of 16S rRNA gene sequence and phylogenetic analysis, the strain W5-1 was shown to belong to the family Paenibacillaceae and was most closely related to Paenibacillus pinihumi $S23^T$ (98.4% similarity) and Paenibacillus tarimensis $SA-7-6^T$ (96.4%). The DNA-DNA relatedness between the isolate and Paenibacillus pinihumi $S23^T$ was 8.5%, indicating that strain $W5-1^T$ represented a species in the genus Paenibacillus. On the basis of the evidence from this polyphasic study, it is proposed that strain $W5-1^T$ is considered to represent a novel species of the genus Paenibacillus, for which the name Paenibacillus kimchicus sp. nov. is proposed. The type strain is $W5-1^T$ (=KACC $15046^T$ = $LMG 25970^T$).

Identification of a new marine bacterium Ruegeria sp. 50C-3 isolated from seawater of Uljin in Korea and production of thermostable enzymes (대한민국 울진 연안 해양에서 분리한 해양 미생물 Ruegeria sp. 50C-3의 동정 및 내열성 효소 생산)

  • Chi, Won-Jae;Kim, Jong-Hee;Park, Jae-Seon;Hong, Soon-Kwang
    • Korean Journal of Microbiology
    • /
    • v.52 no.3
    • /
    • pp.344-351
    • /
    • 2016
  • A marine bacterium, designated as strain 50C-3, was isolated from a seawater sample collected from the East Sea of South Korea. The strain is a Gram-negative, aerobic, yellow colored polar-flagellated bacterium that grows at $20-50^{\circ}C$ and pH 5.5-8.5. Optimal growth occurred at $40-50^{\circ}C$, at pH 6.5-7.5, and in the presence of 2% (w/v) NaCl. Based on 16S rRNA gene sequence similarity, the isolate was considered to represent a member of the genus Ruegeria. The result of this analysis showed that strain 50C-3 shared 99.4% and 96.98% sequence similarity with Ruegeria intermedia CC-GIMAT-$2^T$ and Ruegeria lacuscaerulensis ITI-$1157^T$, respectively. Furthermore, strain 50C-3 showed clear differences from related strains in terms of several characteristics such as motility, carbon utilization, enzyme production, etc. The DNA G+C content was 66.7 mol%. Chemotaxonomic analysis indicated ubiquinone-10 (Q-10) as the predominant respiratory quinone. Based on phenotypic, chemotaxonomic, and phylogenetic characteristics, the isolate represents a novel variant of the Ruegeria intermedia CC-GIMAT-$2^T$, for which we named Ruegeria sp. 50C-3 (KCTC23890=DSM25519). Strain 50C-3 did not produce cellulase and agarase, but produced alkaline phosphatase, ${\alpha}$-galactosidase, and ${\beta}$-galactosidase. The three enzymes showed stable activities even at $50^{\circ}C$ and thus regarded as thermostable enzymes. Especially, the ${\beta}$-galactosidase activity enhanced by 1.9 times at $50^{\circ}C$ than that at $37^{\circ}C$, which may be very useful for industrial application.

Detection and Differentiation of Intentional and Unintentional Mixture in Raw Meats Using Real-time PCR (Real-time PCR을 이용한 식육원료의 의도적, 비의도적 혼입 판별법 개발)

  • Kim, Kyu-Heon;Kim, Mi-Ra;Park, Young-Eun;Kim, Yong-Sang;Lee, Ho-Yeon;Park, Yong-Chjun;Kim, Sang Yub;Choi, Jang Duck;Jang, Young-Mi
    • Journal of Food Hygiene and Safety
    • /
    • v.29 no.4
    • /
    • pp.340-346
    • /
    • 2014
  • In this study, the detection method was developed using real-time PCR to distinguish 4 species (bovine, porcine, horse, and chicken) of raw meats. The genes for distinction of species about meats targeted at 12S rRNA and 16S rRNA parts in mitochondrial DNA. Probes were designed to have a 5' FAM and a TAMRA at the 3' end. This study is to develop 4 species-specific primer and probes about raw materials and real-time PCR on 10 strains to observe the products of non-specific signal for similar species. As a result, any non-specific signal were not detected among each other. Real-time PCR method was developed for quantitation and identification of intentional and unintentional mixture in ground mixed meat (The difference of $C_T$ value between intentional mixture and 100% meat: $${\leq_-}$$ cycles, The difference of $C_T$ value between unintentional mixture and 100% meat: $${\geq_-}$$ cycles). The detection and differentiation of intentional and unintentional mixture in this study would be applied to food safety management for eradication of adulterated food distribution and protection of consumer's right.