Identification of Novel Psychrotolerant Bacterial Strain and Production of $\beta-Galactosidase$

새로운 저온 내성세균의 동정과 $\beta-Galactosidase$ 생산

  • Park, Jeong-Woon (Division of Life Sciences, College of Natural Sciences and Biotechnology Research Institute, Chungbuk National University) ;
  • Yoo, Jae-Soo (School of Electrical and Computer Engineering, Chungbuk National University) ;
  • Roh, Dong-Hyun (Division of Life Sciences, College of Natural Sciences and Biotechnology Research Institute, Chungbuk National University)
  • 박정운 (충북대학교 자연과학대학 생명과학부 및 바이오연구소) ;
  • 유재수 (충북대학교 전기전자 컴퓨터공학부) ;
  • 노동현 (충북대학교 자연과학대학 생명과학부 및 바이오연구소)
  • Published : 2006.03.01

Abstract

Galactose joined to glucose by a $\beta(1\rightarrow4)$ glycosidic bond makes lactose and this disaccharide is rich in milk. It is known that lacotse is hydrolyzed to each monomeric sugar by either lactase in human or $\beta-galactosidase$ in bacteria. Ingestion of milk by lactase-deficient persons causes a temporary diarrhea and subsequent chronic diarrhea results in colitis with chronic inflammation. We isolated a $\beta-galactosidase$ producing psycrotolerant strain AS-20 from near cattle shed and investigated the growth at various temperature conditions. Whereas Escherichia coli strains did not grow at $10^{\circ}C$, the AS-20 strain could grow well at this low temperature and showed optimal growth at $30^{\circ}C$. The isolated strain was identified as 97% Hafnia alvei by biochemical properties. This strain could ferment glucose, lacotse, maltose, mannitol, xylose, ONPG, rhamanose and L-arabinose, and decarboxylate lysin and ornithine. To confirm the identity of isolated strain we amplified 16S rDNA by PCR and searched similarity of the 1426 bp DNA sequcence with Genbank database. The strain AS-20 showed 99% similarity with Hafnia alvei. The activity of $\beta-galactosidase$ was 1.5 times higher when the cell was grown at 10 or $20^{\circ}C$ than at $30^{\circ}C$. The highest enzyme activity of AS-20 was also much higher than that of E. coli, which was grown at $30^{\circ}C$.

우유에 풍부하게 존재하는 유당은 galactose와 포도당의 $\beta(1\rightarrow4)$ glycosidic 결합으로 구성되어 있고, 인간에서 이를 가수분해하는 효소는 lactase, 세균에서는 $\beta-galactosidase$로 알려져 있다. Lactase의 활성이 낮은 사람이 우유를 섭취했을 경우 일시적인 설사를 일으키고 때로는 만성적인 대감의 염증으로 인한 만성설사의 원인이 되기도 한다. 겨울철에 젖소를 사육하는 축사 주변에서 저온에서 생육하는 세균 AS-20을 분리하여 $\beta-galactosidase$ 활성을 갖는 균주를 선별하고 온도별로 분리균의 성장을 조사하였다. 그 결과 대장균이 자라지 못하는 $10^{\circ}C$에서도 분리된 AS-20은 생육이 가능하였고 생육 최적온도는 $30^{\circ}C$이였으며 이 온도에서 세대시간은 60여분 이었다. AS-20의 생화학적 특성을 bioMerieux Vitek Gram negative identification card (GNI+)로 조사한 결과 포도당을 발효, 산화시켰으며 유당, maltose, mannitol, xylose, L-arabinose 등을 이용하여 97% Hafnia alvei, 2% Escherichia coli로 동정되었다. Polymerase chain reaction으로 16S rRNA유전자를 증폭하여 1,426 bp의 염기서열을 결정하여 기존에 보고된 유전자들과의 유사도를 조사한 결과 분리된 균주 AS-20은 Hafnia alvei와 99%의 염기서열상 동성을 보였다. 이러한 결과는 BioMerieux Vitek Gram negative identification card 키트로 동정한 결과와 일치하였다. AS-20을 $10^{\circ}C,\;20^{\circ}C,\;30^{\circ}C$에서 배양하면서 $\beta-galactosidase$ 활성을 조사한 결과 저온인 $10^{\circ}C$$20^{\circ}C$에서 배양하였을 때에 배양최적 온도인 $30^{\circ}C$에서 배양했을 때 보다 1.5 배 정도 높은 효소활성을 보여주었으며, $30^{\circ}C$에서 배양된 대장균 보다 6배 이상의 효소활성을 보여 주어 저온조건에서 분리균의 효소생산이 비교적 높은 것으로 판단되었다.

Keywords

References

  1. Aislabie, J.M., M.R. Balks, J.M. Foght, and E.J. Waterhouse. 2004. Hydrocarbon spills on Antarctic soils: effects and management. Environ. Sci. Technol. 38, 1265-1274 https://doi.org/10.1021/es0305149
  2. Albert, M.J., S.M. Faruque, M. Ansaruzzaman, M.M. Islam, K. Haider, K. Alam, I. Kabir, and R. Robins-Browne. 1992. Sharing of virulence-associated properties at the phenotypic and genetic levels between enteropathogenic Escherichia coli and Hafnia alvei. J. Med. Microbiol. 37, 10-14
  3. Brenner, D.J. 1991. Additional genera of the Enterobacteriaceae. In The Prokaryotes. A handbook on the biology of bacteria: Ecophysiology, isolation, identification, applications 2nd ed. p. 2922- 2937. Edited by A. Balows, H.G. Trüper, M. Dworkin, W. Harder & K.-H. Schleifer. New York: Springer
  4. Bronnenmeier, K., A. Kern, W. Liebl, and W.L. Staudenbauer. 1995. Purification of Thermotoga maritima enzymes for the degradation of cellulosic materials. Appl. Environ. Microbiol. 61,1399-1407
  5. Cavicchioli, R., K.S. Siddiqui, D. Andrews, and K.R. Sowers. 2002. Low-temperature extremophiles and their applications. Curr.Opin. Biotechnol. 13, 253-261 https://doi.org/10.1016/S0958-1669(02)00317-8
  6. Chung, C.-W.1999. Potential correlation between lactose intolerance and cancer occurrence. J. of Korean Ass. Cancer Prevention 4, 52-60
  7. Coker, J.A., P.P. Sheridan, J. Loveland-Curtze, K.R. Gutshall, A. J. Auman, and J. E. Brenchley. 2003. Biochemical characterization of a $\beta$-galactosidase with a low temperature optimum obtained from an Antarctic Arthrobacter isolate. J. Bacteriol. 185, 5473- 5482 https://doi.org/10.1128/JB.185.18.5473-5482.2003
  8. Coombs, J.M., and J.E. Brenchley. 1999. Biochemical and phylogenetic analyses of a cold-active $\beta$-galactosidase from the lactic acid bacterium Carnobacterium piscicola BA. Appl. Environ.Microbiol. 65, 5443-5450
  9. D'Amico, S., P. Claverie, T. Collins, D. Georlette, E. Gratia, A. Hoyoux, M. A. Meuwis, G. Feller, and C. Gerday. 2002. Molecular basis of cold adaptation. Philos. Trans. R. Soc. Lond. B 357, 917-925
  10. Felsenstein, J. 1985. Confidence limits on phylogenics, an approach using the bootstrap. Evolutin 39, 783-791 https://doi.org/10.2307/2408678
  11. Frankel, G., D.C. Candy, P. Everest, and G. Dougan. 1994. Characterization of the C-terminal domains of intimin-like proteins of enteropathogenic and enterohemorrhagic Escherichia coli, Citrobacter freundii, and Hafnia alvei. Infect. Immun. 62, 1835-42
  12. Fujiwara, S. 2002. Extremophiles: developments of their special functions and potential resources. J. Biosci. Bioeng. 94, 518-525 https://doi.org/10.1016/S1389-1723(02)80189-X
  13. Gutshall, K.R., D.E. Trimbur, J.J. Kasmir, and J.E. Brenchley. 1995. Analysis of a novel gene and $\beta$-galactosidase isozyme from a psychrotrophic Arthrobacter isolate. J. Bacteriol. 177, 1981- 1988 https://doi.org/10.1128/jb.177.8.1981-1988.1995
  14. Hoyoux, A., I. Jennes, P. Dubois, S. Genicot, F. Dubail, J. M. Francois, E. Baise, G. Feller, and C. Gerday. 2001. Cold-adapted $\beta$-galactosidase from the Antarctic psychrophile Pseudoalteromonas haloplanktis. Appl. Environ. Microbiol. 67, 1529-1535 https://doi.org/10.1128/AEM.67.4.1529-1535.2001
  15. Krieg N.R. and J.G. Holt. 1984. Bergey's manual of systematic bacteriology. Williams & Wilkins, Baltimore
  16. Laderman, K.A., B.R. Davis, H.C. Krutzsch, M.S. Lewis, Y.V. Griko, P.L. Privalov, and C.B. Anfinsen. 1993. The purification and characterization of an extremely thermostable $\alpha$-amylase from the hyperthermophilic archaebacterium Pyrococcus furiosus. J.Biol. Chem. 268, 24394-24401
  17. Law, D.1994. Adhesion and its role in the virulence of enteropathogenic Escherichia coli. Clin. Microbiol. Rev. 7, 152-73 https://doi.org/10.1128/CMR.7.2.152
  18. Margesin, R., and F. Schinner. 2001. Biodegradation and bioremediation of hydrocarbons in extreme environments. Appl. Microbiol.Biotechnol. 56, 650-663 https://doi.org/10.1007/s002530100701
  19. McBain, A.J., R. G. Bartolo, C.E. Catrenich, D. Charbonneau, R. G. Ledder, A.H. Rickard, S.A. Symmons, and P. Gilbert. 2003. Microbial characterization of biofilms in domestic drains and the establishment of stable biofilm microcosms. Appl. Environ. Microbiol. 69, 177-85 https://doi.org/10.1128/AEM.69.1.177-185.2003
  20. Nakagawa, T., Y. Fujimoto, M. Uchino, T. Miyaji, K. Takano, and N. Tomizuka. 2003. Isolation and characterization of psychrophiles producing cold-active $\beta$-galactosidase. Lett. Appl. Microbiol. 37, 154-157 https://doi.org/10.1046/j.1472-765X.2003.01369.x
  21. Ridell, J., A. Siitonen, L. Paulin, L. Mattila, H. Korkeala, and M. J. Albert. 1994. Hafnia alvei in stool specimens from patients with diarrhea and healthy controls. J. Clin. Microbiol. 32, 2335-7
  22. Russell, N. J.2000. Toward a molecular understanding of cold activity of enzymes from psychrophiles. Extremophiles 4, 83-90 https://doi.org/10.1007/s007920050141
  23. Saiki, R.K., D.H. Gelfand, S. Stoffel, S. J. Scharf, R. Higuchi, G.T. Horn, K.B. Mullis, and H.A. Erlich. 1988. Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science 239, 487-491 https://doi.org/10.1126/science.2448875
  24. Saitou, N., and M. Nei. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4, 406-425
  25. Sambrook, J., E.F. Fritch, and T. Maniatis. 1989. Molecular cloning: a laboratory manual, 2nd ed. Cold Spring Habor Laboratory Press, Cold Spring Habor, New York
  26. Schauer, D.B., and S. Falkow. 1993. The eae gene of Citrobacter freundii biotype 4280 is necessary for colonization in transmissible murine colonic hyperplasia. Infect. Immun. 61, 4654-61
  27. Sheridan, P.P. and J.E. Brenchley. 2000. Characterization of a salttolerant family 42 $\beta$-galactosidase from a psychrophilic antarctic Planococcus isolate. Appl. Environ. Microbiol. 66, 2438-2444 https://doi.org/10.1128/AEM.66.6.2438-2444.2000
  28. Triveni, P. S. 1975. $\beta$-Galactosidase technology: a solution to the lactose probelm. Crit. Rev. Food Technol. 5, 323-354
  29. Yumoto, I., A. Nakamura, H. Iwata, K. Kojima, K. Kusumoto, Y. Nodasaka, and H. Matsuyama. 2002. Dietzia psychralcaliphila sp. nov., a novel, facultatively psychrophilic alkaliphile that grows on hydrocarbons. Int. J. Syst. Evol. Microbiol. 52, 85-90 https://doi.org/10.1099/00207713-52-1-85