• Title/Summary/Keyword: novel bacterium

Search Result 181, Processing Time 0.021 seconds

Isolation and Characterization of a Novel Bacterium Burkholderia gladioli Bsp-1 Producing Alkaline Lipase

  • Zhu, Jing;Liu, Yanjing;Yanqin, Yanqin;Pan, Lixia;Li, Yi;Liang, Ge;Wang, Qingyan
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.7
    • /
    • pp.1043-1052
    • /
    • 2019
  • Active lipase-producing bacterium Burkholderia gladioli Bps-1 was rapidly isolated using a modified trypan blue and tetracycline, ampicillin plate. The electro-phoretically pure enzyme was obtained by purification using ethanol precipitation, ion-exchange chromatography, and gel filtration chromatography. The molecular weight was 34.6 kDa and the specific activity was determined to be 443.9 U/mg. The purified lipase showed the highest activity after hydrolysis with $p-NPC_{16}$ at a pH of 8.5 and $50^{\circ}C$, and the $K_m$, $k_{cat}$, and $k_{cat}/K_m$ values were 1.05 mM, $292.95s^{-1}$ and $279s^{-1}mM^{-1}$, respectively. The lipase was highly stable at $7.5{\leq}pH{\leq}10.0$. $K^+$ and $Na^+$ exerted activation effects on the lipase which had favorable tolerance to short-chain alcohols with its residual enzyme activity being 110% after being maintained in 30% ethanol for 1 h. The results demonstrated that the lipase produced by the strain B. gladioli Bps-1 has high enzyme activity and is an alkaline lipase. The lipase has promising chemical properties for a range of applications in the food-processing and detergent industries, and has particularly high potential for use in the manufacture of biodiesel.

Purification and Biochemical Characterization of β-agarase Produced by Marine Microorganism Cellulophga sp. J9-3 (해양미생물 Cellulophga sp. J9-3이 생산하는 베타-아가레이즈의 분리 및 생화학적 특성)

  • Kim, Da Som;Kim, Jong-Hee;Chi, Won-Jae
    • Microbiology and Biotechnology Letters
    • /
    • v.49 no.3
    • /
    • pp.329-336
    • /
    • 2021
  • Cellulophga sp. J9-3, is a gram-negative, aerobic marine bacterium belonging to the family Flavobacteriaceae. In addition to cellulose degradability, the J9-3 strain is also capable of hydrolyzing agar in the solid and liquid medium, and the production of agarase in the presence of agarose can be remarkably induced by the bacterium. From the cell culture broth of Cellulophga sp. J9-3, ammonium sulfate precipitation and three kinds of column chromatography were successively performed to purify a specific agarase protein, the AgaJ93. Purified AgaJ93 showed the strongest hydrolyzing activity towards agarose (approximately 22%), and even displayed activity towards starch. AgaJ93 hydrolyzed agarose into neoagarotetraose and neoagarohexaose via various oligosaccharide intermediates, indicating that AgaJ93 is an endo-type β-agarase. AgaJ93 showed maximum activity at a pH of 7.0 and temperature of 35 ℃. Its activity increased by more than six times in the presence of Co2+ ions. The N-terminal sequence of AgaJ93 showed 82% homology with the heat-resistant endo-type β-agarase Aga2 of Cellulophaga sp. W5C. However, the biochemical properties of the two enzymes were different. Therefore, AgaJ93 is expected to be a novel agarose, different from the previously reported β-agarases.

Isolation and characterization of an Enterococcus faecalis bacteriophage (Enterococcus faecalis 특이적 박테리오파지의 분리와 특성규명)

  • Kang, Hee-Young;Kim, Shukho;Kim, Jungmin
    • Korean Journal of Microbiology
    • /
    • v.51 no.3
    • /
    • pp.194-198
    • /
    • 2015
  • Enterococcus faecalis is a Gram-positive and facultative anaerobic bacterium that causes many hospital-acquired infections. Novel E. faecalis specific bacteriophage (phage) ECP3 that had been isolated from thirty-four environmental samples and characterized phenotypically and genotypically. ECP3 phage belongs to the family Myoviridae with contractile tail and lysed E. faecalis specifically but other bacteria including Enterococcus faecium. The genome was double-stranded linear DNA and its size was 145,518 bp comprising of 220 open reading frames. The GC content was 35.9%. The genome sequence showed 97% identity in 90% coverage region with Myoviridae phage PhiEF24C. ECP3 is the first E. faecalis-specific Myoviridae phage isolated in Korea which can be a promising antimicrobial agent against E. faecalis infections.

Production and Characterization of a Novel Protease from Bacillus sp. RRM1 Under Solid State Fermentation

  • Rajkumar, Renganathan;Ranishree, Jayappriyan Kothilmozhian;Ramasamy, Rengasamy
    • Journal of Microbiology and Biotechnology
    • /
    • v.21 no.6
    • /
    • pp.627-636
    • /
    • 2011
  • A commercially important alkaline protease, produced by Bacillus sp. RRM1 isolated from the red seaweed Kappaphycus alvarezii (Doty) Doty ex Silva, was first recognized and characterized in the present study. Identification of the isolated bacterium was done using both biochemical characterization as well as 16S rRNA gene sequencing. The bacterial strain, Bacillus sp. RRM1, produced a high level of protease using easily available, inexpensive agricultural residues solid-state fermentation (SSF). Among them, wheat bran was found to be the best substrate. Influences of process parameters such as moistening agents, moisture level, temperature, inoculum concentration, and co-carbon and co-nitrogen sources on the fermentation were also evaluated. Under optimized conditions, maximum protease production (i.e., 2081 U/g) was obtained from wheat bran, which is about 2-fold greater than the initial conditions. The protease enzyme was stable over a temperature range of 30-$60^{\circ}C$ and pH 6-12, with maximum activity at $50^{\circ}C$ and pH 9.0. Whereas the metal ions $Na^+$, $Ca^{2+}$, and $K^+$ enhanced the activity of the enzyme, others such as $Hg^{2+}$, $Cu^{2+}$, $Fe^{2+}$, $Co^{2+}$, and $Zn^{2+}$ had rendered negative effects. The activity of the enzyme was inhibited by EDTA and enhanced by $Cu^{2+}$ ions, thus indicating the nature of the enzyme as a metalloprotease. The enzyme showed extreme stability and activity even in the presence of detergents, surfactants, and organic solvents. Moreover, the present findings opened new vistas in the utilization of wheat bran, a cheap, abundantly available, and effective waste as a substrate for SSF.

Neuroprotective and Anti-Neuroinflammatory Activities of Anthraquinones Isolated from Photorhabdus temperata Culture Broth

  • Yang, Eun-Ju;Kim, Seo-Hyun;Lee, Kyeong-Yeoll;Song, Kyung-Sik
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.1
    • /
    • pp.12-21
    • /
    • 2018
  • Photorhabdus temperata (PT), a gram-negative bacterium, lives symbiotically within entomopathogenic nematodes. The insecticidal compounds derived from Photorhabdus are used as biopesticides in agriculture. However, the physiological properties are not well characterized. In the course of our screening for neuroprotective and anti-neuroinflammatory substances from natural products, the culture broth of PT showed considerable activities. By activity-guided purification, five anthraquinones, namely, 3-methoxychrysazine (1), 1,3-dimethoxy-8-hydroxy-9,10-anthraquinone (2), 1,3,8-trihydroxy-9,10-anthraquinone (3), 3,8-dihydroxy-1-methoxy-9,10-anthraquinone (4), and 1,3,4-trimethoxy-8-hydroxy-9,10-anthraquinone (5), were isolated from the ethyl acetate fraction of the PT culture broth. Among the isolated compounds, $75{\mu}M$ 3 significantly protected mouse hippocampal neuronal cells (HT22) against 5 mM glutamate-induced cell death via the inhibition of reactive oxygen species production, $Ca^{2+}$ influx, and lipid peroxidation. Additionally, 3 and 4 effectively suppressed the interferon-${\gamma}$-induced neuroinflammation of mouse-derived microglial cells (BV2) at 10 ng/ml, via the reduction of nitric oxide, interleukin-6, and tumor necrosis factor-${\alpha}$. Anthraquinones 3 and 4 derived from the PT culture broth are a potential starting point to discover neuroprotective and anti-neuroinflammatory drug leads. The novel compound 5 is reported for the first time in this study.

A Simple, Single Triplex PCR of IS6110, IS1081, and 23S Ribosomal DNA Targets, Developed for Rapid Detection and Discrimination of Mycobacterium from Clinical Samples

  • Nghiem, Minh Ngoc;Nguyen, Bac Van;Nguyen, Son Thai;Vo, Thuy Thi Bich;Nong, Hai Van
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.5
    • /
    • pp.745-752
    • /
    • 2015
  • Tuberculosis (TB) is the most common mycobacterial infection in developing countries, requiring a rapid, accurate, and well-differentiated detection/diagnosis. For the rapid detection and discrimination of Mycobacterium tuberculosis complex (MTC) from non-tuberculous mycobacteria (NTM), a novel, simple, and primer-combined single-step multiplex PCR using three primer pairs (6110F-6110R, 1081F-1081R, and 23SF-23SR; annealing on each of IS6110, IS1081, and 23S rDNA targets), hereafter referred to as a triplex PCR, has been developed and evaluated. The expected product for IS6110 is 416 bp, for IS1081 is 300 bp, and for 23S rDNA is 206 bp by single PCR, which was used to verify the specificity of primers and the identity of MTC using DNA extracted from the M. tuberculosis H37Rv reference strain (ATCC, USA) and other mycobacteria other than tuberculosis (MOTT) templates. The triplex PCR assay showed 100% specificity and 96% sensitivity; the limit of detection for mycobacteria was ~100 fg; and it failed to amplify any target from DNA of MOTT (50 samples tested). Of 307 blinded clinical samples, overall 205 positive M. tuberculosis samples were detected by single PCR, 142 by conventional culture, and 90 by AFB smear methods. Remarkably, the triplex PCR could subsequently detect 55 positive M. tuberculosis from 165 culture-negative and 115 from 217 AFB smear-negative samples. The triplex PCR, targeting three regions in the M. tuberculosis genome, has proved to be an efficient tool for increasing positive detection/discrimination of this bacterium from clinical samples.

Isolation and Characterization of Novel Denitrifying Bacterium Geobacillus sp. SG-01 Strain from Wood Chips Composted with Swine Manure

  • Yang, Seung-Hak;Cho, Jin-Kook;Lee, Soon-Youl;Abanto, Oliver D.;Kim, Soo-Ki;Ghosh, Chiranjit;Lim, Joung-Soo;Hwang, Seong-Gu
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.26 no.11
    • /
    • pp.1651-1658
    • /
    • 2013
  • Nitrate contamination in ground and surface water is an increasingly serious environmental problem and only a few bacterial strains have been identified that have the ability to remove nitrogen pollutants from wastewater under thermophilic conditions. We therefore isolated thermophilic facultative bacterial strains from wood chips that had been composted with swine manure under aerated high temperature conditions so as to identify strains with denitrifying ability. Nine different colonies were screened and 3 long rod-shaped bacterial strains designated as SG-01, SG-02, and SG-03 were selected. The strain SG-01 could be differentiated from SG-02 and SG-03 on the basis of the method that it used for sugar utilization. The 16S rRNA genes of this strain also had high sequence similarity with Geobacillus thermodenitrificans $465^T$ (99.6%). The optimal growth temperatures ($55^{\circ}C$), pH values (pH 7.0), and NaCl concentrations (1%) required for the growth of strain SG-01 were established. This strain reduced 1.18 mM nitrate and 1.45 mM nitrite in LB broth after 48 h of incubation. These results suggest that the G. thermodenitrificans SG-01 strain may be useful in the removal of nitrates and nitrites from wastewater generated as a result of livestock farming.

Characterization of a Vibrio parahaemolyticus Phage Isolated from Marine (해양에서 분리한 Vibrio parahaemolyticus Phage의 특성)

  • Yoon, Sun-Ok;Ju, Seong-A;Heo, Moon-Soo;Jung, Cho-Rok;Ju, Jin-Woo
    • The Journal of the Korean Society for Microbiology
    • /
    • v.34 no.5
    • /
    • pp.423-433
    • /
    • 1999
  • A novel bacteriophage, designated as VPP97, that infects the strains of Vibiro parahaemolyticus (hallophilic, Gram-negative bacterium) isolated most commonly from marine environments, has been discovered, and several of its properties have been determined. The plaques were clear and sized $0.6{\sim}1.0\;mm$ in diameter. The virion forms a single band on 70% sucrose gradient and ${\rho}1.50$ CsCl gradient by sucrose gradient centrifugation and CsCl gradient centrifugation respectively. It has a hexagonal head and a relatively long tail, as shown by electron microscopy. Vibrio alginolyticus, Vibrio fluvialis and Vibrio furnissii were also sensitive to this phage. It was almost totally inactivated at $70^{\circ}C$ and at pH below 5 or over 10. The nucleic acid of VPP97 is composed of DNA. The VPP97 had 9 specific structural proteins sized between 21.5 kDa and 97.4 kDa on SDS-PAGE. When V. parahaemolyticus cultures were treated with either phage VPP97 or one of the several antibiotics for 2 hours, the viable number of V. parahaemolyticus treated with the phage VPP97 is lower than that treated with chloramphenicol, erythromycin or penicillin, but not lower than that treated with tetracycline. Mice that have responded to the phage treatment revealed the lower numbers of V. parahaemolyticus in small intestine and less damage on small intestine compared to the untreated mice. Therefore, we suggest that the phage treatment appears effective to the infection by V. parahaemolyticus.

  • PDF

Compound IKD-8344, a Selective Growth Inhibitor Against the Mycelial Form of Candida albicans, Isolated from Streptomyces sp. A6792

  • HWANG EUI IL;YUN BONG SIK;YEO WOON HYUNG;LEE SANG HAN;MOON JAE SUN;KIM YOUNG KOOK;LIM SE JIN;KIM SUNG UK
    • Journal of Microbiology and Biotechnology
    • /
    • v.15 no.4
    • /
    • pp.909-912
    • /
    • 2005
  • In the course of screening for selective growth inhibitors against the mycelial form of Candida albicans, we isolated a Streptomyces sp. A6792 from soils. The inhibitor was isolated from the above bacterium and identified through several spectral analyses with UV and mass spectrophotometries, and various NMR. The compound was determined to be a macrocyclic dilactone antibiotic, IKD-8344 (molecular weight: 844, molecular formula: $C_{48}H_{76}O_{12}$). The compound selectively inhibited the growth of mycelial form of C. albicans with an MIC of 6.25 ${\mu}g/ml$. It also exhibited strong inhibitory effect preferentially on the mycelial form of various Candida spp. including C. krusei, C. tropicalis, and C. lusitaniae, with MICs ranging from 1.56 to 25 ${\mu}g$/ml. Furthermore, the compound showed no significant toxicity against SPF ICR mice up to 60 mg/kg. These results suggest that IKD-8344 is a useful lead compound for the development of novel antifungal agents, based on the preferential growth inhibition against Candida spp.

Sclareol Protects Staphylococcus aureus-Induced Lung Cell Injury via Inhibiting Alpha-Hemolysin Expression

  • Ouyang, Ping;Sun, Mao;He, Xuewen;Wang, Kaiyu;Yin, Zhongqiong;Fu, Hualin;Li, Yinglun;Geng, Yi;Shu, Gang;He, Changliang;Liang, Xiaoxia;Lai, Weiming;Li, Lixia;Zou, Yunfeng;Song, Xu;Yin, Lizi
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.1
    • /
    • pp.19-25
    • /
    • 2017
  • Staphylococcus aureus (S. aureus) is a common gram-positive bacterium that causes serious infections in humans and animals. With the continuous emergence of methicillin-resistant S. aureus (MRSA) strains, antibiotics have limited efficacy in treating MRSA infections. Accordingly, novel agents that act on new targets are desperately needed to combat these infections. S. aureus alpha-hemolysin plays an indispensable role in its pathogenicity. In this study, we demonstrate that sclareol, a fragrant chemical compound found in clary sage, can prominently decrease alpha-hemolysin secretion in S. aureus strain USA300 at sub-inhibitory concentrations. Hemolysis assays, western-blotting, and RT-PCR were used to detect the production of alpha-hemolysin in the culture supernatant. When USA300 was co-cultured with A549 epithelial cells, sclareol could protect the A549 cells at a final concentration of $8{\mu}g/ml$. The protective capability of sclareol against the USA300-mediated injury of A549 cells was further shown by cytotoxicity assays and live/dead analysis. In conclusion, sclareol was shown to inhibit the production of S. aureus alpha-hemolysin. Sclareol has potential for development as a new agent to treat S. aureus infections.