• Title/Summary/Keyword: notch effect

Search Result 266, Processing Time 0.028 seconds

Fatigue Damage Analysis of a Low-Pressure Turbine Blade (저압터빈 블레이드의 피로손상 해석)

  • Youn, Hee Chul;Woo, Chang Ki;Hwang, Jai Kon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.7
    • /
    • pp.713-720
    • /
    • 2015
  • The sizes of the final blades of a low-pressure (LP) steam turbine have been getting larger for the development of high-capacity power plants. They are also larger than the other blades in the same system. As a result, fatigue damage is caused by a large centrifugal force and a low natural frequency of the blade. Recently, many failure cases have been reported due to repeated turbine startups and their prolonged use. In this study, the causes and mechanism of failure of a LP turbine blade were analyzed by using a finite element method to calculate the centrifugal force, the natural frequency of a stress-stiffening effect, and the harmonic response. It was observed that the expected fatigue damage position matched the real crack position at the airfoil's leading edge, and an equivalence fatigue limit approached a notch fatigue limit.

Evaluation of the Effect of High Temperature on the Interface Characteristics between Solid Oxide Fuel Cell and Ag Paste (고온열처리가 고체산화물연료전지의 전극과 Ag 페이스트의 계면에 미치는 특성 평가)

  • Jeon, Sang Koo;Nahm, Seung Hoon;Kwon, Oh Heon
    • Journal of the Korean Society of Safety
    • /
    • v.30 no.1
    • /
    • pp.21-27
    • /
    • 2015
  • In this study, interfacial characteristics between SOFC and Ag paste as current collector was estimated in the high temperature environment. The Ag paste was used to connect the unit cell of SOFC strongly with interconnector and provide the electrical conductivity between them. To confirm electrical conductivity, Ag paste was treated in the furnace at $800^{\circ}C$ for 48 hours. The sheet resistance of Ag paste was measured to compare the resistance values before and after the heat treatment. Also, the four-point bending test was performed to measure the interfacial adhesion. The unit cell of SOFC and $SiO_2$ wafer were diced and then attached by Ag paste. The $SiO_2$ wafer had the center notch to initiate a crack from the tip of the notch. The modified stereomicroscope combined with the CCD camera and system for measuring the length was used to observe the fracture behavior. To compare the characteristics before heat treatment and after heat treatment, the specimen was exposed in the furnace at $800^{\circ}C$ for 48 hours and then the interfacial adhesion was evaluated. Finally, the interfacial adhesion energy quantitatively increases $1.78{\pm}0.07J/m^2$ to $4.9{\pm}0.87J/m^2$ between the cathode and Ag paste and also increase $2.9{\pm}0.47J/m^2$ to $5.12{\pm}1.01J/m^2$ between the anode and Ag paste through the high temperature. Therefore, it is expected that Ag paste as current collector was appropriate for improving the structural stability in the stacked SOFC system if the electrical conductivity was more increased.

A COMPARATIVE STUDY ON THE SEVERAL METAL REINFORCEMENT METHODS OF MAXILLARY COMPLETE ACRYLIC RESIN DENTURE BASE (수종의 상악 총의치수지상 금속보강법에 관한 비교연구)

  • Jeong, Chang-Mo
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.34 no.2
    • /
    • pp.363-372
    • /
    • 1996
  • A common site of fracture in maxillary complete denture is on the anteroposterior midline that coincides with the notch for relief of the labial frenum. Various approaches to reduce the incidence of this type of fracture have been suggested. The most widely used technique is the reinforcement of acrylic resin denture base with several solid metal forms. But few comparative studies on the efficacy of metal reinforcements have been reported. This study was conducted to compare reinforcing effects of commonly available metal reinforcements, which include wire, metal mesh embedded in the denture base and metal plate affixed to the impression surface of denture base by silicoating technique. This was load on the posterior. The strain gauges were oriented perpendicular to the anteroposterior midline of maxillary polished denture surface at one labial and the four palatal sites Non-renforced denture was used as control. The results were as follows : 1. In the non-reinforced denture group, only tensile strains on the palatal polished surface were observed. The tensile strains decreased in the order of incisive papilla, posterior denture border area, mid palatal area and rugae area. Compressive strain was observed on the labial polished surface. 2. As compared with the non-reinforced denture group, the metal plate or the metal mesh reinforced denture groups showed reduced palatal tensile strains,and the metal mesh reinforcement had a better reinforcing effect than the metal plate. But both reinforced denture groups showed no difference in the amount of compressive strain on the labial polished surface when compared to the non-reinforced denture group. 3. The metal wire positioned just above the labial notch decreased the compressive strain on the labial polished surface. But the presence of metal wires in the palatal polished surface caused increase in tensile strains in the area.

  • PDF

The Characteristics of the Hydrogen Embrittlement for the Cr-Mo Steels in Use of Pressure Vessel (압력용기용 Cr-Mo강의 수소취화 특성)

  • Lee, Hwi-Won;Yang, Hyun-Tae;Kim, Sang-Tae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.6
    • /
    • pp.1107-1113
    • /
    • 2002
  • This study presents the hydrogen emblittlement in the metal, which decreases the ductility and then induces the brittle fracture. The contribution deals with the effect of strain rate and notch geometry on hydrogen emblittlement of 1.25Cr-0.5Mo and 2.25Cr-1Mo steels, which are in use at high pressure vessel. Smooth and notched specimens were examined to obtain the elongation and tensile strength. For charging the hydrogen in the metal, the cathodic electrolytic method was used. In this process, current density is maintained constant. The amount of hydrogen penetrated in the specimen was detected by the hydrogen determenator(LECO RH404) with the various charging time. The distribution of hydrogen concentration penetrated in the specimen was obtained by finite element analysis. The amount of hydrogen is high in smooth specimen and tends to concentrate in the vicinity of surface. The elongation and tensile strength decreased with the passage of charging time in 1.25Cr-0.5Mo and 2.25Cr-1Mo steels. The elongation increased and tensile strength decreased as strain rate increased. As a result of this study, it is supposed that 1.25Cr-0.5Mo steel is more sensitive than 2.25Cr-lMo steel in hydrogen embrittlement. Hydrogen embrittlement susceptibility of notched specimen after hydrogen charging is more remarkable than that of smooth specimen.

Effect of Hydride Reorientation on Delayed Hydride Cracking In Zr-2.5Nb Tubes

  • Yun Yeo Bum;Kim Young Suk;Im Kyung Soo;Cheong Yong Moo;Kim Sung Soo
    • Nuclear Engineering and Technology
    • /
    • v.35 no.6
    • /
    • pp.529-536
    • /
    • 2003
  • The objective of this study is to investigate the reorientation of hydrides with applied stress intensity factor, the peak temperature and the time when to apply the stress intensity factor in a Zr-2.5Nb pressure tube during its thermal cycle treatment. Cantilever beam (CB) specimens with a notch of 0.5 mm in depth made from the Zr-2.5Nb tube were subjected to electrolytic hydrogen charging to contain 60 ppm H and then to a thermal cycle involving heating to the peak temperature of either 310 or $380^{\circ}C$, holding there for 50 h and then cooling to the test temperature of $250^{\circ}C$. The stress intensity factor of either 6.13 or $18.4\;MPa\sqrt{m}$ was applied at the beginning of the thermal cycle, at the end of the hold at the peak temperatures and after cooling to the test temperature, respectively. The reorientation of hydrides in the Zr-2.5Nb tube was enhanced with the increased peak temperature and applied stress intensity factor. Furthermore, when the CB specimens were subjected to $18.4\;MPa\sqrt{m}$ from the beginning of the thermal cycle, the reoriented hydrides occurred almost all over the Zr-2.5Nb tube, surprisingly suppressing the growth of a DHC crack. In contrast, when the CB specimens were subjected to the stress intensity factor at the test temperature, little reorientation of hydrides was observed except the notch region, leading the Zr-2.5Nb to grow a large DHC crack. Based on the correlation between the reorientation of hydrides and the DHC crack growth, a governing factor for DHC is discussed along with the feasibility of the Kim's DHC model.

Preparation and Properties of the Intra-type Al2O3Ag Nanocomposites (입내 분산형 Al2O3/Ag 나노복합체의 제조와 특성)

  • Cheon, Sung-Ho;Han, In-Sub;Awaji, Hideo
    • Journal of the Korean Ceramic Society
    • /
    • v.44 no.4 s.299
    • /
    • pp.208-213
    • /
    • 2007
  • Alumina/silver ($Al_2O_3/Ag$) nanocomposites with Ag content up to 9 vol% were prepared from nanopowder by soaking method using ${\gamma}-Al_2O_3$ of needle type and spark plasma sintering (SPS). The mechanical properties of specimens were investigated three-point flexural strength and toughness as a function of the Ag contents. The maximum flexural strength of the alumina/silver nanocomposite was 850 MPa for the 1 vol% composite, and also higher than monolith alumina as about 800 MPa at 3, 5, and 7 vol% Ag contents. Fracture toughness by single edged V-notch beam (SEVNB) was $4.05MPa{\cdot}m^{1/2}$ for the 3 vol% composite and maintained about $4.00MPa{\cdot}m^{1/2}$ at 5, and 7 vol% Ag content. Microstructure of fracture surface for each fracture specimens was observed. Due to the inhibition effect of alumina grain growth, the average grain size of nanocomposites depends on the content of Ag nano particles. The fracture morphology of nanocomposite with dislocation (sub-grain boundary) by silver nano-particles of second phases in the alumina matrix also showed transgranular fracture-mode compare with intergranular of monolith alumina. Thermal conductivity of specimens at room temperature was about 40 W/mK for the 1 vol% Ag content.

Estimation of Fracture Toughness Degradation of High Temperature Materials by Nonlinear Acoustic Effects (비선형 음향효과에 의한 고온 재료의 파괴인성 열화도 평가)

  • Jeong, Hyun-Jo;Nahm, Seung-Hoon;Jhang, Kyung-Young;Nam, Young-Hyun
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.20 no.5
    • /
    • pp.424-430
    • /
    • 2000
  • In order to develop an ultrasonic evaluation method for properties degradation of high temperature materials, a number of Cr-Mo-V steel samples were heat-treated and their damage mechanism was examined. Ultrasonic parameters such as velocity, attenuation, and more recently developed nonlinear acoustic parameter were measured. The nonlinear acoustic parameter was found to be most sensitive to material degradation mainly attributed to the precipitation of impurities in grain boundaries. When compared to the electrical resistivity results, the nonlinear parameters showed similar behavior. There existed a relatively good correlation between the nonlinear parameter and the fracture appearance transition temperature (FATT) obtained by Charpy V-notch impact test. Based on the relationship between the FATT and the fracture toughness ($K_{IC}$), correlation between the nonlinear parameter and $K_{IC}$ was established.

  • PDF

Suprascapular Nerve Entrapment Neuropathy by Ganglion Cyst (결절종에 의한 상견갑 신경 포착 증후군)

  • Rhee Yong Girl;Kim Kang II;Yang Hyoung Seop
    • Clinics in Shoulder and Elbow
    • /
    • v.2 no.2
    • /
    • pp.143-150
    • /
    • 1999
  • Purpose: The purpose of this study is to describe the characteristic clinical findings and treatment of suprascapular nerve entrapment by ganglion and to evaluate its results. Materials and Methods: Seven paitents with suprascapular nerve entrapment were evaluated on an average 13 months(range, six months to three years two months) after surgical excision and decompression. There were six males and one female. The mean age at operation was 31 years(range, 23 to 40 years), Suprascapular nerve entrapment were caused by compression of ganglion cyst in suprascapular notch or spinoglenoid notch in all cases. All patients complained of pain located over posterolateral area of the shoulder. Two patients had atrophy of both the supraspinatus and infraspinatus muscles, In four patients, only the infraspinatus muscle was involved. Muscle strength on both forward flexion and external rotation was decreased in two patients. In four patients, only external rotation was decreased. All patients underwent open excision of ganglion cyst and decompression. Results: The most dramatic effect of operation was prompt disappearance of pain in all patients. The average visual analog scale had improved from 7.2 to 0.6 point at the latest follow-up evaluation. An atrophy of the supraspinatus or infraspinatus muscle partially disappeared in four of six patients and muscle strength of forward flexion or abduction improved in all of six patients. The overall result was excellent for five patients and good for two. Conclusion: Surpascapular nerve entrapment by ganglionic cyst had clinically unique symptoms and signs on physical examination. Surgical excision is effective for symptomatic and functional outcomes. We believe that early intervention can be one of treatment modality before an irreversible damage occurs if the ganglion is large enough to compress suprascapular nerve, and to develop severe pain and muscular atrophy.

  • PDF

Clinico-Radiological Study of Temporomandibular Ankylosis (악관절 강직증 환자의 임상ㆍ방사선학적 연구)

  • Choi Sun Won;Ahn Hyung Kyu
    • Journal of Korean Academy of Oral and Maxillofacial Radiology
    • /
    • v.14 no.1
    • /
    • pp.99-107
    • /
    • 1984
  • The auther studied clinically and. radiologically 48 cases which had been diagnosed as TMJ ankylosis in SNUDH (1974-1984). The purpose of this study is to analyse clinical features of TMJ ankylosis and to evaluate the effect of TMJ ankylosis on the growth of the mandible. The obtained results were as follows: 1. Total 48 cases of TMJ ankylosis patients consist of 23 males and 25 females. 65 percent of all cases of TMJ ankylosis occurred in patients between 1 and 10 years of age. The awerage age at the onset of ankylosis was 11.7 and average duration at the time of examination was 11.7 years. 2. Unilateral akylosis (81.3%) was more frequent than bilateral ankylosis (18.7%). 3. Traum a (57.9%) and infection (21.2%) were main etiology. 4. Inability to open the mouth (78.3%) and facial asymmetry (17.4%) were main chief complaints. 5. Mandibular morphology through radiographic features. (a) In TMJ ankylosis patients the ramus length of the ankylosed side was shorter than that of the non-ankylosed side. Comparing with the centrol group, ramus length of the each side was shorter than normal value. (b) The partial body length of the ankylosed side was longer than that of the non-ankylosed side. Comparing with the control group, partial body length of the each side was longer than normal value. Partial body length was related with antegonial notch depth. (c) Ratio of upper and lower ramus length at the level of mandibular foramen was smaller in ankylosed side than in non-ankylosed side. (d) Antegonial notch depth and ramus posterior contour depth were deeper in ankylosed side than in non-ankylosed side and those of both sides were deeper than normal value. (e) Gonial angle in ankylosed side was larger than in non-ankylosed side and that in both sides was smaller than normal value.

  • PDF

The Effect of Hole Size on the Failure Strength and Fracture Toughness in Polymer Matrix Composite Plates (Plastic기 복합재료의 파손강도 및 파괴인성에 미치는 원공크기의 영향)

  • Kim, Jeong-Gyu;Kim, Do-Sik
    • Korean Journal of Materials Research
    • /
    • v.3 no.2
    • /
    • pp.197-204
    • /
    • 1993
  • Abstract The effects of the hole size and the specimen width on the fracture behavior of several fabric composite plates are experimentally investigated in tension. Tests are performed on plain woven glass/ epoxy, plain woven carbon/epoxy and satin woven glass/polyester specimens with a circular hole. It is shown in this paper that the characteristic length according to the point stress criterion depends on the hole size and the specimen width. An excellent agreement is found between the experimental results and the analytical predictions of the modified failure criterion. The notched strength increase with an increase in the damage ratio, which is explained by a stress relaxation due to the formation of damage zone. When the unstable fracture occurred, the critical crack length equivalent for the damage zone is about twice the characteristic length. The critical energy release rate $G_c$ is independent of hole size for the same specimen width. The variation of $G_c$ according to the material system, fiber volume fraction and specimen width relates to the notch sensitivity factor. $G_c$ increases with a decrease in the notch sensitivity factor, which can be explained by a stress relaxation due to the increase of damage zone.

  • PDF