• Title/Summary/Keyword: normal coordinates

Search Result 112, Processing Time 0.028 seconds

A GEOMETRIC APPROACH TO TIMELIKE FLOWS IN TERMS OF ANHOLONOMIC COORDINATES

  • Yavuz, Ayse;Erdogdu, Melek
    • Honam Mathematical Journal
    • /
    • v.44 no.2
    • /
    • pp.259-270
    • /
    • 2022
  • This paper is devoted to the geometry of vector fields and timelike flows in terms of anholonomic coordinates in three dimensional Lorentzian space. We discuss eight parameters which are related by three partial differential equations. Then, it is seen that the curl of tangent vector field does not include any component in the direction of principal normal vector field. This implies the existence of a surface which contains both s - lines and b - lines. Moreover, we examine a normal congruence of timelike surfaces containing the s - lines and b - lines. Considering the compatibility conditions, we obtain the Gauss-Mainardi-Codazzi equations for this normal congruence of timelike surfaces in the case of the abnormality of normal vector field is zero. Intrinsic geometric properties of these normal congruence of timelike surfaces are obtained. We have dealt with important results on these geometric properties.

The impact of reorienting cone-beam computed tomographic images in varied head positions on the coordinates of anatomical landmarks

  • Kim, Jae Hun;Jeong, Ho-Gul;Hwang, Jae Joon;Lee, Jung-Hee;Han, Sang-Sun
    • Imaging Science in Dentistry
    • /
    • v.46 no.2
    • /
    • pp.133-139
    • /
    • 2016
  • Purpose: The aim of this study was to compare the coordinates of anatomical landmarks on cone-beam computed tomographic (CBCT) images in varied head positions before and after reorientation using image analysis software. Materials and Methods: CBCT images were taken in a normal position and four varied head positions using a dry skull marked with 3 points where gutta percha was fixed. In each of the five radiographic images, reference points were set, 20 anatomical landmarks were identified, and each set of coordinates was calculated. Coordinates in the images from the normally positioned head were compared with those in the images obtained from varied head positions using statistical methods. Post-reorientation coordinates calculated using a three-dimensional image analysis program were also compared to the reference coordinates. Results: In the original images, statistically significant differences were found between coordinates in the normal-position and varied-position images. However, post-reorientation, no statistically significant differences were found between coordinates in the normal-position and varied-position images. Conclusion: The changes in head position impacted the coordinates of the anatomical landmarks in three-dimensional images. However, reorientation using image analysis software allowed accurate superimposition onto the reference positions.

Normal range of facial asymmetry in spherical coordinates: a CBCT study

  • Yoon, Suk-Ja;Wang, Rui-Feng;Na, Hee Ja;Palomo, Juan Martin
    • Imaging Science in Dentistry
    • /
    • v.43 no.1
    • /
    • pp.31-36
    • /
    • 2013
  • Purpose: This study aimed to measure the bilateral differences of facial lines in spherical coordinates from faces within a normal range of asymmetry utilizing cone-beam computed tomography (CBCT). Materials and Methods: CBCT scans from 22 females with normal symmetric-looking faces (mean age 24 years and 8 months) were selected for the study. The average menton deviation was $1.01{\pm}0.66$ mm. The spherical coordinates, length, and midsagittal and coronal inclination angles of the ramal and mandibular lines were calculated from CBCT. The bilateral differences in the facial lines were determined. Results: All of the study subjects had minimal bilateral differences of facial lines. The normal range of facial asymmetry of the ramal and mandibular lines was obtained in spherical coordinates. Conclusion: The normal range of facial asymmetry in the spherical coordinate system in this study should be useful as a reference for diagnosing facial asymmetry.

Semantic Segmentation of Urban Scenes Using Location Prior Information (사전위치정보를 이용한 도심 영상의 의미론적 분할)

  • Wang, Jeonghyeon;Kim, Jinwhan
    • The Journal of Korea Robotics Society
    • /
    • v.12 no.3
    • /
    • pp.249-257
    • /
    • 2017
  • This paper proposes a method to segment urban scenes semantically based on location prior information. Since major scene elements in urban environments such as roads, buildings, and vehicles are often located at specific locations, using the location prior information of these elements can improve the segmentation performance. The location priors are defined in special 2D coordinates, referred to as road-normal coordinates, which are perpendicular to the orientation of the road. With the help of depth information to each element, all the possible pixels in the image are projected into these coordinates and the learned prior information is applied to those pixels. The proposed location prior can be modeled by defining a unary potential of a conditional random field (CRF) as a sum of two sub-potentials: an appearance feature-based potential and a location potential. The proposed method was validated using publicly available KITTI dataset, which has urban images and corresponding 3D depth measurements.

NORMAL SYSTEMS OF COORDINATES ON MANIFOLDS OF CHERN-MOSER TYPE

  • Schmalz, Gerd;Spiro, Andrea
    • Journal of the Korean Mathematical Society
    • /
    • v.40 no.3
    • /
    • pp.461-486
    • /
    • 2003
  • It is known that the CR geometries of Levi non-degen-erate hypersurfaces in $\C^n$ and of the elliptic or hyperbolic CR submanifolds of codimension two in $\C^4$ share many common features. In this paper, a special class of normalized coordinates is introduced for any CR manifold M which is one of the above three kinds and it is shown that the explicit expression in these coordinates of an isotropy automorphism $f{\in}Aut(M)_o {\subset}Aut(M),\;o{\in}M$, is equal to the expression of a corresponding element of the automorphism group of the homogeneous model. As an application of this property, an extension theorem for CR maps is obtained.

CONSTRUCTION OF CLASS FIELDS OVER IMAGINARY QUADRATIC FIELDS USING y-COORDINATES OF ELLIPTIC CURVES

  • Koo, Ja Kyung;Shin, Dong Hwa
    • Journal of the Korean Mathematical Society
    • /
    • v.50 no.4
    • /
    • pp.847-864
    • /
    • 2013
  • By a change of variables we obtain new $y$-coordinates of elliptic curves. Utilizing these $y$-coordinates as meromorphic modular functions, together with the elliptic modular function, we generate the fields of meromorphic modular functions. Furthermore, by means of the special values of the $y$-coordinates, we construct the ray class fields over imaginary quadratic fields as well as normal bases of these ray class fields.

Envelope of the Wallace-Simson Lines with Signed Angle ${\alpha}$

  • Bae, Sung Chul;Ahn, Young Joon
    • Journal of Integrative Natural Science
    • /
    • v.5 no.1
    • /
    • pp.38-41
    • /
    • 2012
  • In this paper we show that for any triangle and any point on the circumcircle the envelope of the Wallace-Simson lines with signed angle ${\alpha}$ is a parabola. The proof is obtained naturally using polar coordinates. We also present the reparametrization of the envelope which is a linear normal curve.

EFFICIENT PARALLEL GAUSSIAN NORMAL BASES MULTIPLIERS OVER FINITE FIELDS

  • Kim, Young-Tae
    • Honam Mathematical Journal
    • /
    • v.29 no.3
    • /
    • pp.415-425
    • /
    • 2007
  • The normal basis has the advantage that the result of squaring an element is simply the right cyclic shift of its coordinates in hardware implementation over finite fields. In particular, the optimal normal basis is the most efficient to hardware implementation over finite fields. In this paper, we propose an efficient parallel architecture which transforms the Gaussian normal basis multiplication in GF($2^m$) into the type-I optimal normal basis multiplication in GF($2^{mk}$), which is based on the palindromic representation of polynomials.

Vertex Normal Computation using Conformal Mapping and Mean Value Coordinates (등각사상과 평균값좌표계를 이용한 정점 법선벡터 계산법)

  • Kim, Hyoung-Seok B.;Kim, Ho-Sook
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.3
    • /
    • pp.451-457
    • /
    • 2009
  • Most of objects in computer graphics may be represented by a form of mesh. The exact computation of vertex normal vectors is essential for user to apply a variety of geometric operations to the mesh and get more realistic rendering results. Most of the previous algorithms used a weight which resembles a local geometric property of a vertex of a mesh such as the interior angle, the area, and so on. In this paper, we propose an efficient algorithm for computing the normal vector of a vertex in meshes. Our method uses the conformal mapping which resembles synthetically the local geometric properties, and the mean value coordinates which may smoothly represent a relationship with the adjacent vertices. It may be confirmed by experiment that the normal vector of our algorithm is more exact than that of the previous methods.

A study on the nonlinear normal modes of rotors (회전체의 비선형 정규 모우드에 관한 연구)

  • 김용철
    • Journal of Ocean Engineering and Technology
    • /
    • v.10 no.1
    • /
    • pp.17-24
    • /
    • 1996
  • In the present paper nonlinear normal modes of a rotor system is studied. The methodology to obtain the nonlinear normal modes is based on center manifold reduction technique. It also provides a way of nonlinear coordinate transform from the physical cordinates to the modal coordinates and an idea of individual nonlinear modal dynamics. In order to apply the present method to a rotor dynamics a single mass rotor system on nonlinear elastic supports is employed and the nonlinear normal modes of the system are obtained.

  • PDF