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NORMAL SYSTEMS OF COORDINATES ON
MANIFOLDS OF CHERN-MOSER TYPE

(GERD SCHMALZ AND ANDREA SPIRO

ABSTRACT. It is known that the CR geometries of Levi non-degen-
erate hypersurfaces in C" and of the elliptic or hyperbolic CR sub-
manifolds of codimension two in C* share many common features.
In this paper, a special class of normalized coordinates is introduced
for any CR manifold M which is one of the above three kinds and
it is shown that the explicit expression in these coordinates of an
isotropy automorphism f € Aut(M), C Aut(M), o € M, is equal
to the expression of a corresponding element of the automorphism
group of the homogeneous model. As an application of this prop-
erty, an extension theorem for CR maps is obtained.

1. Introduction

In their fundamental paper [2], S.-S. Chern and J. Moser introduced
two new methods to determine the CR invariants of Levi non-degenerate
real hypersurfaces in C"*!,

The first one applies to any real analytic Levi non-degenerate real
hypersurface M C C**! and it is based on the fact that each such hyper-
surface is locally equivalent to a hypersurface of a distinguished family,
the so-called hypersurfaces in normal form. By this fact, the studies on
CR invariants and on the automorphism groups of those hypersurfaces
reduce to analysis of the equations of hypersurfaces in normal forms.

The second method applies to any smooth (and not only real analytic)
Levi non-degenerate real hypersurface M. Chern and Moser proved that
on M there exists a natural principal bundle 7 : Pops(M) — M and a
natural Cartan connection w on Poys(M). Using this property, the CR
invariants and the automorphism group of M can be explicitly expressed
in terms of the curvature of w and of the automorphisms of Pop (M),
which leave w invariant.
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In a sequence of other papers (see e.g. [7], [5], [10], [11], [4]), it was
shown that there exist two more families of CR manifolds for which
similar methods can be applied. These are the manifolds of dimension
six with a 2-dimensional complex distribution (D, J) of either elliptic or
hyperbolic type. We recall that, if M is one of such manifolds, the CR
structure (D, J) is osculated by the CR structure of a quadric Q which
is one of the following two models:

Im(w) = |z1)?, Im(ws) = |22 (hyperbolic)
Im(w;) = Re(z122),  Im(wq) = Im(z122) (elliptic)

An important feature which holds in common for the Levi non-degen-
erate CR structures of hypersurface type and the six dimensional mani-
folds with elliptic or hyperbolic complex distribution is that the symme-
try group G of the associated homogeneous model (i.e. the osculating
quadric) is semi-simple and with very large stability subgroup H. In fact,
the CR structure of the mentioned CR. manifolds is a parabolic structure,
which admits a canonical Cartan connection (see [14], [3], [10]). This
means that any of these manifolds has an associated H-principal bundle
m: P — M and a Cartan connection w : TP — g = Lie(G), which
is invariant under any automorphism of the CR structure. An explicit
construction of such bundle P with a Cartan connection w : TP — g is
given in [2] for Levi non-degenerate hypersurfaces and in [11] for elliptic
and hyperbolic CR manifolds.

Another common property shared by the real-analytic Levi non-dege-
nerate hypersurfaces in C" and the 6-dimensional submanifolds of C*
of elliptic or hyperbolic type is that there exist special holomorphic
coordinates in the ambient space (called normal coordinates), which are
determined up to an action of the group H and in which the equation
of the manifold takes a certain normal form.

So, the real analytic Levi non-degenerate hypersurfaces and the 6-
dimensional submanifolds in C* of elliptic or hyperbolic type share the
following properties:

(a) their CR structures are parabolic structures and they admit a
canonical Cartan connection;

(b) an explicit construction for such canonical Cartan connection is
available;

(¢) as real analytic submanifolds in CV, they all have normal forms.

For shortness, we will call these three families of manifolds CM man-
ifolds (“CM” for “Chern-Moser”).
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So far, several results on the automorphism group of a real analytic
CM manifold M have been obtained by working in normal coordinates,
where the automorphisms of M assume a simplified form.

In our paper, we introduce a new system of coordinates, which we call
Q-normalized coordinates. Roughly speaking, such coordinates can be
described as follows. Consider the osculating quadric @ = G/H of M,
the principal bundle 7 : P — M and the Cartan connection w : TP — g.
Then, g = g_ ®h with g_ being a nilpotent subalgebra and h = Lie(H)
and for some suitable neighborhood & C g_ the following maps are
diffeomorphisms onto their images:

a:U—-Q=G/H, a(E) =exp(FE)-H
B:U—M, B(E) =8 (u,),

where w, is a fixed point in P and ®¥ (u,) is the flow along the vector field
E on P with w(E) = E. In fact, ! and 8! are normal coordinates
associated to the Cartan connections of @ and M (see [12]).

The Q-normalized coordinates are given by the map

aoft:pUyc M — QcCC".

We show that this map is a system of coordinates in which the ele-
ments of the isotropy Aut(M).,, o = 7(u,), are written by the expres-
sions of some uniquely associated elements in the isotropy H = Aut(Q),
of the quadric Q. This implies that o o 37! maps diffeomorphically the
orbits of Aut(M),, in B(U) C M into orbits of a suitable subgroup of
Hin o) C Q.

In contrast to the normal coordinates, these new coordinates are not
determined by a holomorphic change of coordinates in the ambient space.
However, in many applications, this fact does not have any influence. For
example, in studying topological properties of the orbits of a given group
A fixing a point x € M the Q-normalized coordinates allow to reduce
to the case M = Q and A C H = Aut(Q),.

We believe that several known results, proved just in the real analytic
case, can be extended to the category of all smooth CM manifolds by
using Q-normalized coordinates.

Finally, we show that any real analytic CM manifold, embedded in
normal form, admits a distinguished system of Q-normalized coordi-
nates. Using this fact, we are able to show that the expression of a
normalization map in Q-normalized coordinates is again equal to the
expression of a corresponding automorphism of the osculating quadric.
This can be used to obtain a simplified proof of several properties of
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the normalization maps, like e.g. the fact that they constitute a group
isomorphic to the stability subgroup Aut(Q) of the osculating quadric.

The structure of the paper is the following. In Section 2, we review
some basic definitions on CM manifolds, needed in the rest of the paper.
In Section 3 and Section 4, we introduce the Q-normalized coordinates
and we prove the above described properties. In Section 5, as an imme-
diate application of the concept of Q-normalized coordinates, we prove
an extension theorem for CR maps which generalizes a theorem by Vi-
tushkin on real analytic Levi non-degenerate hypersurfaces to all CM
manifolds.

In all what follows, we will denote a CR structure on a manifold M by
the pair (D, J), where D denotes the real distribution in TM underlying
the holomorphic distribution of the CR structure and J is the family of
complex structures J, : D, — D,, which makes the real distribution D
a holomorphic distribution.

For any vector field A on a manifold N, we will use the symbol “®/”
to indicate the flow of A. For any Lie group G with Lie algebra g =
Lie(G), we will use the symbol exp : g — G to indicate the exponential
map of G.

2. Some basic facts on CM manifolds

In the following three subsections, we describe in detail what partic-
ular properties of CM manifolds will be used.

2.1. Quadric automorphisms

Below we list the Lie groups Gg of rational automorphisms of the as-
sociated osculating quadric @ for the three types of CM manifolds. The
stability subgroup at the origin 0 € Q is denoted by Hg = (Gg)o and,
for any element a € Hg, we will denote by F, : CV — C¥ the associated
birational transformation of C which induces on Q the transformation
a.

(a) If M is a real hypersurface, then Gg = SUy, p, /Zn.
(b) If M is an elliptic manifold, then Gg = (SL3(C)/Z3) x Zj.
(¢) If M is an hyperbolic manifold, then Gg = (SUs 1 /Z3 x SUs 1 /Z3)
NZQ.
In all three cases, the Lie algebra gg = Lie(Gg) admits a natural
structure of graded Lie algebra of depth two:

(2.1) go=g 2 +g +g’+g' +4°



Normal systems of coordinates 465

and the subalgebra hg = Lie(Hg) is equal to
(2.2) ho =g’ +g" +g°

The rational automorphisms from the stability groups Hg = (Gg)o
are particularly important for the construction of normal forms. Since
we will use them later, we recall here their explicit description.

First of all, for the hyperquadrics Imw = (z, z), let us denote any
birational transformation F, : C**1 — C"*! determined by an element
a € Gg by

Fa(z,w) = (i (2,0), F2(2,0)
where F¥(z,w) is the last component of F,(z,w), while
Fi(z,w) = (F5' (z,w), ..., Fgm (2, w))

is the n-tuple of the first n components. Then the maps F?(z,w) and
F{z,w) are of the form:

zZ+ aw
2.3 Fg = AU, ’
(2.31) ¢ T = 21(z, a0) — (ra + 1{Qa, @a))w
w
2.3 Fy =)
(2.39) o 1 - 21(z, o) — (rq + i{ag, 0g))w ’

where U, is a pseudounitary endomorphism with respect to the hermit-
ian form (-, -), A, is a positive real number, a, is a C"-vector and 7, an
arbitrary real number. In other words, each birational transformation
F, is uniquely determined by the associated parameters (Aq, Uy, 0a;7Ta)-
Notice also that the parameters (Aq, Ug, @q,7q) can be recovered from
the explicit expressions of the components of F, by the following rela-
tions:

| OFw 1 OF?
(2.41) Ao =) 5 g Us =35,

1 O?FY

, re = —= Re
o 222 (Ow)?

)
0

_ 1, 0F
A ¢ Ow

(2-42) Qq

0
For what concerns hyperbolic quadrics, from Belosapka’s results [1] it
follows that, for any a € Hg, the corresponding rational automorphism

Fo = (FJ' F2 B F?)
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splits into the direct product of two sphere automorphisms and it is of
the form

s
(2.51) R PR ke L
1 —2iadz; — (r; +i|dd|?)w;
(2.52) FY = | Pp—e—

1- 2ia$zj —(r; +1 |a£|2)wj ’
for j =1,2, possibly followed by the map that interchanges z1,w; with
z2,wy. Here, ¢ are arbitrary non-vanishing complex numbers, o, are
arbitrary complex numbers and rJ, are arbitrary real numbers. Then F,
is uniquely determined by the parameters (cj, a4, 73), 7 = 1,2, and such
parameters can be recovered from the components of F, by the following
formulae:

. QF7 . -, OFF
(2.61) e = : af = ()7t =
8Zj 0 Bwj 0
A 1 82 Fwi
2.6 r) = ——Re .
(262) 20 @

And now, let us turn to the elliptic quadric. The simplest representation
of the isotropic automorphisms of the elliptic quadric can be obtained
in coordinates z1, z2,w1,ws where w; = w; +iwy and wy = wy — iws.
Using these coordinates, the quadric can be written by just one complex
equation, namely

(2.7) w—lzl—wz =229 .

The isotropic automorphisms F, = (F?', F?2, F¥' F“?) take then the
form

21+ alw

(2.81) F& = ¢} — —
¢ “1-2ia2z — (rk +iala)w;

w1

wl . L1732
(2.8) Fd fafay_ 2ia2z — (rl +iala?)w;
The formulae for F7? , F2? are analogous with indices 1 and 2 inter-
changed. As for the hyperbolic quadrics, these mappings again can be
followed by a mapping that interchanges 21, w; with 22, ws. As before, ch
are arbitrary non-vanishing complex numbers, o}, are arbitrary complex
numbers, but the rJ are mutually conjugate complex numbers. Thus,
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the parameters (c,’z, aﬁ, 777,), j = 1,2, corresponding to an automorphism
F, are expressed in terms of its components by

. OF; . i, OF7
2. = -2 I =7t =2
2.0 A= ed=d G
1 1[BFn| R
2.9 == < + ) .
(2.92) ¢ 2ccz2 \ (Qwi)t]y  (Ow2)?]g

Notice that a “twisted real part” of the second derivatives appears in
the equation (2.93). This phenomenon is due to the twisted imaginary
part of the w’s in the equation of the quadric.

2.2. Chern-Moser bundle

For any CM manifold M, it has been proved that there exists a
canonically associated Hg-principal bundle m : Pop (M) — M, which
is called Chern-Moser bundle of M (see [2], [11], [10]). In all cases, it
is constructed as a bundle 7, : Pop(M) — E over an auxiliary bundle
#:E— M.

For manifolds of hypersurface type, the bundle # : E — M is the
conormal bundle of the distribution D, i.e. E is the subbundle of 7 :
T*M — M, whose fibers E, = #7'(z) C Tt M, x € M, are given by all
1-forms 6, which satisfy

ker0, =D, .

This is an R*- principal bundle. We recall that, for any 8, € E; and
any two D-vector fields £, n, the value

A

depends only on the values of £,7 at the base point = of §, and there-
fore defines a bilinear form on D,. This form can be considered as the
imaginary part of a Hermitian form (namely, it is the Levi form of the
CR structure) that will be exploited for further reductions.

For elliptic and hyperbolic manifolds, the conormal bundle 7 : £ — M
is the subbundle of # : (T* x T*)M — M, whose fibers &, = 77 1(z) C
T*M x T*M, x € M, are given by all pairs of 1-forms (6%,62) which
satisfy

ker 61 Nker62 =D, .

This conormal bundle # : £ — M is a GL2(R)-principal bundle and it
can be reduced to a subbundle # : E — M, which is a C* x Zs-bundle or
a R* x R* x Zs-bundle in the elliptic and hyperbolic case, respectively.
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To obtain such a reduction in the hyperbolic case, one has to consider
only pairs of 1-forms (', 82) € £, so that the bilinear forms *([¢, 7)) are
both degenerate. This condition fixes the two forms (6, 6?) up to scale
and order.

In the elliptic case, one has to consider only pairs of 1-forms (6!, 6?) €
€ such that the C-valued bilinear form (6! +16%) ([¢, n]) is degenerate.
This condition fixes the C-valued form (and hence the pair (6*,62%)) up
to scale and conjugation.

In both cases, the reduction 7 : E->M obtained, is the auxiliary
bundle we mentioned.

For any CM manifold, the Chern-Moser bundle 7 : Pop (M) — M is
defined as a bundle of so-called adapted frames (or, by duality, adepted
coframes) over E. The exact definition of the adapted frames at a
given point ¢ € E depends only on the geometric data (D,J) of M
and of ¢ itself and we refer the reader to [2] for the CR manifolds of
hypersurface type and to [11] for the elliptic and hyperbolic manifold.
Here, we only need to recall that it is proved that = : Pops(M) — M has
a natural structure of Hg-principal bundle, where Hg = (Gg)o is the
stability subgroup of the automorphism group Gg of osculating quadric
Q associated with M. Moreover, we want to stress the fact that the
construction ensures that any (local) CR equivalence between two CM
manifolds M; and M, of the same kind lifts automatically to a mapping
of the corresponding Chern-Moser bundles Pops(M3) to Popr(Ma).

From now on, for any (local) CR equivalence f : M; — M, between
to CM manifold, we will denote by f : Pop (M) — Pop(Ma) the cor-
responding lifted map between the corresponding Chern-Moser bundles.

2.3. Cartan connection

The characteristic property of the Chern-Moser bundle as defined
in [2] or [11] is the existence of a smooth field of distinguished frames
at tangent spaces T, Poy (M) of Pop(M), depending only on the CR
structure of M. This means that there is a vector-valued 1-form w on
P (M) that assigns to any tangent vector its coordinates with respect
to the distinguished frame at the base point of this vector. It is shown
that the 1-form w takes values in the Lie algebra go = Lie(Gg) and
satisfies the following conditions:

(1) for any u € Pop (M) the mapping w, : T,Poy(M) — gg is an
isomorphism,
(2) Rjw = Adp-1w for any h € Hg,
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(3) for any vertical fundamental vector field X, corresponding to the
flow Rexptx for X € ho = Lie(Hg), one has wu(X'u) = X at all
points u € Poy (M).

Thus, w is a Cartan connection. Moreover, it is proved that w satis-
fies the following crucial property. A diffeomorphism h : Pop (M) —
Poa(M) is the lift b = f of some CR automorphism f € Aut(M) if and
only if

hMo=w.

This go-valued 1-form w is called Chern-Moser connection of M.

2.4. The fundamental vector fields on the Chern-Moser bun-
dle

Let M be a CM manifold, 7 : Pop(M) — M the associated Chern-
Moser bundle and w : TPop (M) — go the Chern-Moser connection.
For any X € gg, we will call fundamental vector field on Popn(M)
associated with X the unique vector field such that, at any u € Poa (M)

(2.2) w(X)=X .

Notice that, for any X € hg C gg, the associated fundamental vector
field X coincides exactly with the vector field corresponding to the flow
Rexth on PCM(M)

About the fundamental vector fields, we have the following technical
lemma, which will be used in the next sections.

LEMMA 2.1. Let M be a CM manifold. Then:
(i) for any a € Hg and any X € gg, we have that Rax(X) =

Ad, (X)y

(ii) for any CR automorphism f : M — M and any X € gg, we have
that f,(X) = X;

(i) consider the linear projection map p_ : g — g~ 2+g~", determined
by the decomposition (2.1); then, for any X € g,t € R and U C

Pon(M), such that the flow ®X ‘u is defined,

U —

T(O(I){{’u = 7ro<I>f_(X)

u

Proof. (i) Since w is a Cartan connection, (R,)*w = Ad, -1 ow for any
a € Hg. Hence, if X is a fundamental vector field,

~ ~

W(Rax(X)) = Ad,-1 ow(X) = Ad—1(X) .
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This shows that Rg.(X) is the fundamental vector field associated with
Ad,- (X).
(ii) Since f*w = w, for any fundamental vector field X,

w(f(X) = froX) =wX) =X .

(iii) Notice that m o <I){( = @f‘(iz) and 7o @i’”(x) = @Zr'(p‘(x)). On
the other hand, if we denote by X the element in ho = g® + ¢! + g2
equal to X = X —p_(X), we have that

X'zpf(?)-&-j(.

Since X is tangent to the fibers at all points, it follows that ,(X) =

—

e (p-(X)). So,

To Qf — (I)Zr*(f() — (I);r*(P—(X)) =70 q)i;’—(X)

¥

as we needed to prove. O

2.5. Normal forms

For any CM manifold, which is embedded as a real analytic subman-
ifold of C™, it is possible to determine a new embedding, the so-called
embedding in normal form. Here we recall the constructions of such
normal forms introduced by Chern and Moser [2] for the real analytic
hypersurfaces, by Loboda [6] for the hyperbolic manifolds, and by Ezov
and Schmalz [5] for elliptic manifolds.

DEFINITION 2.2. If M is a real analytic, Levi non-degenerate hy-
persurface in C"*!, containing the origin, it is said to be embedded in
normal form if it is defined by an equation of the form

Imw = (2,2) + Z Pre(2,Z, Rew)
k,£>2

where:
(a) (z,2) is the Hermitian form (z,z) = Y25, [&7]* — 35, |72
where (n,p) is the signature of the Levi form of M;
(b) each function py ¢ is a polynomial of degree k in the variable z and

a polynomial of degree £ in the variable Z;
(¢) p22, p32 and ps3 satisfy the equations

trpog = tr p3p = trlp33 = 0,
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where the operator tr is

1
tr pre = -k—eApkz

and A is the Laplacian associated with the Hermitian form (z, z).

DEFINITION 2.3. If M is a real analytic, hyperbolic submanifold of
C*, containing the origin, it is said to be embedded in normal form if it
is defined by two equations of the form

Im(w?) = 12812 + Z p}'cl,kg’lhgg(z,i, Rew) , i=1,2
k1,k2,1,€22>1

where:

(b’) each function p}'cl’kﬂl,,Z2 is a polynomial of degree k; in the vari-
able z¢ and a polynomial of degree ¢; in the variables 7' whose
coefficients are real-analytic functions of Rew;

(c’) the sum 3y 1 g0 Pi,e belongs to the subspace P of power se-
ries, defined as follows:

pllcl,kg,l,o =0 Plzcl,kz,m =0, forki+ky>2
P01 =0 pi110=0
p%,l,l,l =0 P%,1,1,1 =0
p5,0,2,0|Rew2=0 =0 p(2),2,0‘2lRew1=0 =0
p§,0,2,0|Rew2=0 =0 P(2),3,0,2|Re wi=0=0
£30.3,0/Rewz=0 =0 P8 3.03|Rew; =0 = 0.

Notice that the two defining equations of an hyperbolic manifold em-
bedded in normal form are real. Therefore, the conditions above have
consequences for their conjugate pendants.

DEFINITION 2.4. If M is a real analytic, elliptic submanifold C4,
containing the origin, it is reasonable to combine the defining equations
into one complex equation

V= 2122 + Z pk1,k2,81,€2(zl)22’zl,z2aU, U)’
ky,k2,61,622>1
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where U = Rew; +iRews and V = Imw; + ilmws,. It is said to be
embedded in normal form if

Pk k2,01 =0 P1,0,01,6, =0, for ky+ ko, by + 0 >2
p11,10 =10 po111 =0
p11,1,1 =0 p2,002lg=0 =0
3,0,0,2l5=0 = 0 £2,0,0,3li7=0 = 0

p31070v3|l_]:0 = 0'

Notice that if M ¢ CV is embedded in normal form, there exists only
one defining equation p = 0 for such embedding of M, which satisfies
the conditions given in Definitions 2.2, 2.3 or 2.4. In fact, p = 0 is the
equation of a graph over the tangent plane {Imw = 0} at the point 0.
The graph M determines the equation uniquely.

From now on, any defining equation p = 0, which satisfies the condi-
tions given in Definitions 2.2 - 2.4, will be said to be in normal form.
The previous remark means that for any embedding in normal form of
a real analytic CM manifold M there is exactly one defining equation in
normal form.

We recall that, by the results of [2], [6] and [5], the following theorem
holds, which explains the importance of the embeddings in normal form
and the associated defining equations in normal form.

THEOREM 2.5. Let M C CV be a real analytic CM submanifold of
CV containing the origin. Then, for any element a € Hg, there exists
an open neighborhood V C CV of 0 and a so-called normalizing map

N :yvccVN ¢V,
[M,a]

which is a holomorphic map, depending on the manifold M, such that
(o) M' = [AI}I ](V N M) is a submanifold of CV, which is embedded in

,a
normal form;

B3) [MN] is uniquely determined by the same first and second order
,a

derivatives at 0 that determine F, (see Section 2.1) and possesses
the same 2-jet as F,.

In particular, if M ¢ CV is a real analytic CM submanifold embedded
in normal form and M’ = F(M) for some local biholomorphism F : V C
CN — CN fixing the origin, then F = : N ! for some a € Hg.

M’ a]
Finally, if M c CV is embedded in normal form, a local biholomor-
phism F, which fixes the origin and induces a CR equivalence between
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M and another CM manifold M’ = F(M) in normal form, is of the form

F= N = N 7! forsomeac Hg.
M,a]  [M,a7?

3. Systems of Q-normalized coordinates

First of all, we need the following two technical lemmas.

LEMMA 3.1. Let M be a CM manifold of dimension n. For any
u € Pop (M), there exists an open neighborhood U, C g 2+g! of 0,
such that:

(1) the restriction of the exponential map exp : g — Gg to U, is
a diffeomorphism between U, and a n-dimensional submanifold
exp(Uy) C Go “

(2) for any X € U,, the flow ®F of the corresponding fundamental
vector field X is defined for any t € [0,1] and any v in a suitable
neighborhood U, C Poy (M) of u;

(3) the map

&Xp, Uy — M, &Py (X) = (8] (u))

is a diffeomorphism between U, and a neighborhood U, of the
point z = m(u).

Proof. Consider a system of coordinates £ : V C Poy(M) — RY on
a neighborhood V of u € Pop (M) and, for any X € g and any v € V,
denote by vx , the maximal integral curve in V of the system of ordinary
differential equations
d’YX K
dt
Such a system depends smoothly on X and v and satisfies the property

V(SX),v(t) = ’YX,'U(S ’ t) .

By classical facts on the smooth dependence of ordinary differential
equations on initial data, there exists a relatively compact neighbor-
hood u € V C V and a relatively compact neighborhood 0 € VCag,
so that the curves vx, are defined for ¢ € [0, 1] whenever X € Y and
v € V. Moreover, choosing a smaller neighborhood V C g, we may al-
ways assume that exp|;, is a diffeomorphism onto its image. It follows
that U, = VN (g~2+ g~ 1) satisfies (1) and (2). Finally, observe that the
subspace

= X"Yx,v s 'YX,U(O) =v.

span{ X, , X € g 24+¢7 "} C TuPou(M)
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is supplementary to the vertical subspace ker 7|, C Ty Pop (M) and it
has the same dimension of M. On the other hand,

span{ V € TuM : V =&Xp.(X), X eTolly =g 2 +g7 1}
= span{ m(X.) , X €g7+g7" }.

For this reason, the rank of the differential of exp,|; is maximal at the

point u. So, by choosing a smaller neighborhood U,, we may always
suppose that exp,|,; is a diffeomorphism onto its image, i.e. that (3)
holds. O

The inverse map é?q')‘l Uy — Z:lu to exp as defined in Lemma 3.1,
will be called system of normal coordinates, associated with the frame
u € Pop(M). The neighborhood U, of z, will be called normalizable
neighborhood of x, associated with the frame u € Pop(M)|,.

As before, for any a € Gg = Aut(Q), we denote by F, : CN — CV
the corresponding birational transformation and by F, the lift of F, to
the Chern-Moser bundle of Q of the automorphism a.

LEMMA 3.2. Let Q be an osculating quadric of a CM manifold,
Pcop(Q) the associated Chern-Moser bundle and u, a fixed point of
Pcm(Q). Finally, consider the G g-equivariant identification map

def +
1:Go — Pom(Q) . ug) = Fyluo) -
Then the Chern-Moser connection w : TPop(Q) — gg coincides
with (171)*y, where v : Gg — gg is the Maurer-Cartan form of Gq.
Moreover, for any X € go and any u = ﬁ‘g(uo), g € 8o, the following
properties hold:

(a) ‘I)i( (u) = Fexp(tAdg(X))(u);
(b) Fexp(tp_ (%)) (T (10)) = Fexp(ex)(m(uo)) (for the definition of p_, see
Lemma 2.1 (iii)).

Proof. The first claim follows from the fact that the differential dw =
(+"1)*dy and the 2-form [w,w] = (271)*[t, ] satisfy all linear relations
which uniquely characterize the Chern-Moser connection, as defined in
[2] and [11].

To prove (a) and (b), first of all, notice that since w = (37 1)*y, for
any left invariant vector field X € gg, the associated fundamental vector
field X is equal to

X =1,(X).
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So, for any X € gg and any u = Fg(uo) € Pop(Q), the curve
o = Fg'exp(tX) (uo) = }?g-exp(tX)g*1 (u)
is an integral curve of the vector field

FpauX)=Fu(X)=X

passing through the point u. This implies that @fz (1) = Fexp(t Adg(x))(w)
and proves (a).
(b) follows from (a) with v = u,, Lemma 2.1 (iii) and the identities

™ (Fexp(tX)(U‘O)) = Fexp(tX)(Tr(uO))

and 7 (Fexp(tp;(X))(UO)) = Fexp(tp~ (X))(W(UO))- O

Now, with the help of the previous two lemmas, we may introduce
the main concept of this section and establish their first properties in
the next Propositions 3.5 and 3.6.

DEeFINITION 3.3. Consider a point z € M and a frame u € Popr (M),
C Popy (M), over the point z, and let U, be a normalizable neighborhood
of z associated with u. Let also U, = &xp, * (Us,).
We call Q-normalization of U, associated with u the map
Nith €M =QCCh,  N) = Fapegio)(©) -

u
The complex coordinates of any point .[N]' (y) € Q are called Q-normalized
u

complex coordinates of y determined by u. The point x = m(u) has
clearly normalized complex coordinates equal to 0 and it is called the
center of the Q-normalization {\/]' .

u

REMARK 3.4. Notice that, by Lemma 3.2 (b), if M = Q and u €
Pop(M)|o, a Q-normalization associated with u is simply the identity
map of Q.

Observe also that a Q-normalization A is almost never a CR map.
In fact, it is simply a diffeomorphism between an open set of M and
an open set of the osculating quadric @, which turns out to be a CR
transformation if and only if M coincides or it is locally equivalent with

Q.

In the proof of Proposition 3.6 below we will use the following alge-
braic Lemma.
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LEMMA 3.5. Let g = g— + p be a decomposition of the Lie algebra g
into subalgebras, p_ : g — g_ the corresponding projection and P the
subgroup of G with Lie(P) = p. Then for any a € P the mapping

p-oAd,-1]g 19— —9-
is a linear isomorphism.

Proof. Since Lie(P) = p, the subspace p C g is invariant under Ad,-1,
thus Ad,-1 has block form

p—oAd, 1 g 0
% Ada—l |p ’

On the other hand Ad,-: is an isomorphism of g. This is only possible
if p_ o Ad,-1 |4~ is a linear isomorphism. O

PROPOSITION 3.6. Let J[\/]' , IA/] 'V C M — C* be two Q-normalizations,
u] [u

centered at x = w(u) = w(u'), and let a € Hg be the unique element
such that
W=u-a.
Then there exists an open subset V' C V, so that
N
] \v4

Proof. Let us denote by U = éxp, (V) and U’ = &p,* (V) the open
sets in g2 4+ g~!, which are image of V under the normal systems of
coordinates éxp, * and Eﬁ);,l, respectively.

=F,oN
v/ [u]

From Lemma 2.1, for any X € ggo and any ¢, for which the flow <I>{(
is defined, we have that

Rax(X) d10x)

R, 0 ®f = & o Ry = &)
It follows that, for any X € U,
exXpy, (X) =m (&7 (u)) = 7(R, 0 & (u))

oR, .

(3-2) Ad _1(X) poAd _1(X), ,
= (@ (. a)) = (@ Py

where we applied Lemma 2.1 (iii).
By Lemma 3.5

1 1

P-oAdy-ilg2igrig i +g — gl + g
is a linear isomorphism. It follows that the set

U =p_oAd,—1(U)
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is an open neighborhood of 0 and, for any X that belongs to (p_o
Ad,-1)~HU"nU’), we may compute both values exp,(X) and exp,/(p—o
Ad,-1(X)). Then, by (3.2),

é—)zf)u(X) = é—)zf)u’ (p— 0Ady— (X)) :
This amounts to say that, for any y in a suitable neighborhood V' of z,

&b, (y) = p- 0 Ady1 (&35, (v) -
and hence that
N W) = Fop(pora, s, ) (0)
Using Lemma 3.2 (b), we get that
[/1)[](2/) = Fpoexp(@my ()oa1 (0) = Fa0 Foy (azp ) 0 Fa 1 (0) =Fa({1\£(y)),
where we used the fact that F,-:(0) = 0. OJ

PROPOSITION 3.7. Let f : M — M' be a CR transformation, map-
ping the point x into ' = f(z) and let N :Ud C M — C}, N' : U' C
M' — C* be two Q-normalizations associated with u € Pop (M), with
z = m(u), and with v’ € Popy(M'), with ' = w(u'), respectively. Let
also a = a(f,u,u') € Hg be the unique element such that

f(u) = ul ta,
where f : Popy (M) — Pop (M) is the lifted map of f.
Then
NofoN=F,.
In other words, the function f = N" o f oN'~Y, which represents f in the
systems of Q-normalized complex coordinates N and N’ coincides with
the restriction on Q of the birational transformation F, : C* — C*.

Proof. Consider the lifted automorphism f : Pop (M) — Popy (M)
and recall that, for any X € b, f*(f() = X', where X and X’ repre-
sent the fundamental vector fields associated with X on Pop(M) and
Pop (M), respectively (see Lemma 2.1). So, for any X € exp. t(U),
from Lemma 2.1 (iii) it follows that

foa@p,(X) = for(@X(w) =n(f o @ (w) = m(@F P (f(u)))
= (@] (« - ) = n(Ra 0 27 ()

Ad(X) _AdL(x)
= (@34 (o)) = m(@F A ().
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Therefore, for any X € &xp, (U N f~(U')) and any y € U N f~1U)

oD, (X) = 8Dy (p-oAda(X)) = &P, (f(y)) = p-oAda(&XD, " ().
Using Lemma 3.2 (b), we get that at all points of U N f~1(U’),

N' (W) = Fopiaz (i (©)

= Foxp(p-oada @' ) (0) = Fexp(ada @ (1) (0)

= Fao P, () © Fa1(0) = Fao N(y)

where we used again the fact that F(0) = 0. O

From the previous proposition, we get the following immediate corol-
lary.

COROLLARY 3.8. Let N : U C M — C* be a Q-normalization associ-
ated withu € Poy(M), with z = w(u). Then for any CR transformation
f: M — M fixing the point x, there exists an element a € Hg such that
N o foN~1 (ie. the expression of f in the Q-normalized coordinates)
is equal to

NofoNl=F,.

REMARK 3.9. Notice that Corollary 3.8 implies the following impor-
tant fact. Let H C Aut,, (M) C Aut(M) be a subgroup of the isotropy
subgroup of automorphisms of the CM manifold M, fixing a point ,,
and let H the subgroup of Hg defined by

H={heHg : h(uy=u-h, heH}.

Then, for any y in a Q@-normalizable neighborhood of z,, the Q-normali-
zation N sends diffeomorphically any orbit

Hy)={y eU : y=h(y), heH}C M
onto the corresponding orbit of Q
HN@) ={zeNU) : z=hN(y),heH}CQ.

In this way, up to a diffeomorphism, one may analyze completely the
local orbits of a stability group H just by looking at the orbits in Q of
the corresponding automorphism group H.

This gives considerable simplifications of quite a few proofs on ex-
istence of non-compact automorphisms of strongly pseudoconvex real
hypersurfaces, of hyperbolic manifolds and of elliptic manifolds (see e.g.
[1], [6], [13] and [9]). A detailed discussion of such applications and new
results will be given in a forthcoming paper.
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4. Comparisons between normal forms and Q-normalizations
in the real analytic case

In this section, we make explicit the relation between the embeddings
in normal form of a real analytic CM manifold and the Q-normalizations,
as introduced in the previous section.

Let M C CV be a real analytic CM submanifold of CV, which is
embedded in normal form and let p = 0 be the uniquely associated
defining equation in normal form. We want to show that there exists
a naturally distinguished element u in the fiber of the Chern-Moser
bundle Pop(M) over the point 0 € M which we will call the canonical
element. Notice that the canonical element allows to identify the fibers
of Pop(M) with the set of Q-normalizations. We proceed considering
each possibility for M separately.

First of all, let us assume the M C C"*! is a real analytic Levi
non-degenerate hypersurface embedded in normal form and let

p(z,Z,Rew,Imw) =Imw — (z,2) ~ Z Pree(z,Z,Rew) =0
k,£>2

be its uniquely associated defining equation in normal form (see remark
after Definition 4.1). Recall that, by the definition in [2], the elements
of m1(0) C Popm (M) are adapted linear frames (eg,...,ean+1) at the
tangent spaces TyE of the conormal bundle # : E — M at the points
§ € E, which lie above #(@) = 0. The points § € #~1(0) are non-

vanishing 1-forms such that
4.1) ker6 = Dy ,

where Dy is the tangent complex space at 0. In order to simplify the
notation, we will represent any point u € 7 !(0) as (2n + 3)-tuple
(0; €0, ..., ean+1), where 4 satisfies (4.1) and (e, . .., €2n+1) is an adapted
frame at 0.

Now, consider the element u, = (6;eq,...,e2m+1) € 7 1(0) defined
as follows:

(1) 6 «f dp o J|pym = d(Imw) o J|p,a; here J denotes the standard

complex structure of C*+1 given by the multiplication by v/—1;
(2) the first 2n + 1 elements of the coframe, which is dual to (eg,. ..,

eant1), are €° def #*(6) and

21 L i (d(Re ) nnr) , ¥ € 4 (d(Im2)|pn) for 1<i<n;
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(3) the last element e*"*! is defined as follows: for any = € M, any
element § € 771(z) can be written as § = tg - (dpo J) |, p, for
some tg € R*; so we have a natural real function 7

7 E—R*, T(0) =tg ;

we set )
2n+1 def
=0 drle .

From the definition in {2], we have that u, = (6;eg, . .., €2n+1) defined by
(1)-(3) is an adapted coframe. Notice also that u, is uniquely determined
by the defining function p in normal form and hence it is uniquely asso-
ciated to the embedded manifold M. We will call such u, the canonical
element associated with M.

Secondly, let us assume the M C C* is a real analytic hyperbolic or

elliptic submanifold embedded in normal form and let
Im(uﬂ) — <Z, z>i —_ Z p217k2,217£2 (Z, 2’ Re w) =0 s 7 = 1, 2
k1,k2,61,822>1

be its uniquely associated defining equations in normal form. As above,
any element u € 771(0) C Pop(M) can be denoted by u = (61,62 e,
...,eg), where: (6',6?) are two 1-forms such that

(4.2) ker 0 Nker 6% = Dy
and which satisfy certain additional conditions (see [11] for the exact
definition); (e, ..., eg) is an adapted frame in Tigr 2 E.
Then, we consider the element u, = (6,62 €1,...,e3) € 771(0) de-
fined as follows:
(1) 68 L dpi o J|gpr = d(Tm w?) o J)ryur;
(2’) the first 6 elements of the coframe, which is dual to (eg,...,es),

are el = 7*(0'), 2 = #*(6?) and
62i+1 q_e:f A (d(Re zi)'ToM) : e2i+2 d=ef #* (d(Im Zi)’ToM) for i = 1,2 )

(3’) the last two elements €7 and e® are defined as follows: for any
z € M, any pair (61,0%) € #71(x) can be written as § = Ay -
(dpo J) |1, m, for some Ay € G; where G is the structure group of
#:E—-M ; so we have a natural function 7

T E—=G, 1(0%,6% =4 ;

if we fix a suitable basis Ei, Ey for Lie(G), we may write the
differential dr as dr = E; ® dm! + E» ® dr? and, using the same
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arguments for (4.5) in [11], one can check that there exists exactly

two real numbers 0 # X!, i = 1,2 so that (e!,...,e®) with
def 1 def 1
7 =e ﬁdTll(ﬂl,Gz) s 68 :e ﬁdT2|(01’02)

is an adapted coframe as defined in [11], Section 4.

Also in this case, the element u, = (6;eq,...,e2m+1) € Pom(M)
defined by (1’)-(3’) is uniquely determined by the defining function p
in normal form and hence it is uniquely associated to the embedded
manifold M. Again, we will call such u, the canonical element associated
with M.

The existence of the canonical element brings us to introduce the
following definition.

DEFINITION 4.1. Let M C C™ be a real analytic CM manifold em-
bedded in normal form and let up; € m=1(0) C Pop (M) be its canonical
element. The @-normalization at 0 associated with ups will be called
canonical @-normalization of M the Q-normalization at 0 and it will be

denoted by [.1/\\/1f] UCM—C.

The following proposition determines how the canonical elements
change if one replaces an embedding in normal form with another.

ProPOSITION 4.2. Let M C C™ be a CM manifold embedded in

normal form and let up; € 771(0) C Pop (M) be its canonical element.

For any normalizing map [MN | : Y C C* — C", let us denote by M, def
,a

N (M) the new embedded CM manifold in normal form and by N
[M,a] [M,d]

Popy (M) — Poy{(M,) denote the lifted map between the Chern-Moser
bundles of M and M,, respectively.
Then, for any a € Hg, the canonical element uy, of M, is equal to

Up, = /N\ up)-a b,
M= M’a]( M)
Proof. We will prove the claim just for the hypersurface case, since
for the other two cases the arguments are analogous. To simplify the

notation, let us write the componentsof N and N "!= N as
[M,a] [M,a} [Mg,a—1]
N]:(fZI7"'7fzn7fw)’ N _1:(g217"'7gzn7gw)'

M,a [M,a]
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and let ups = (0;¢eq,...,e2,41) be the canonical element of M. Finally
let

(Ath Ua7 aa7 Ta)

be the parameter which determine uniquely the element Fj, as defined
in Section 2.1.
By definition, the 1-form 6 is mapped by [MN into the 1-form

ya

¢ = (N 0= dimg®)o Sl

where we used the fact that ( N J,oJo( N 1), = J, since N is

M,a) ) [M,a
holomorphic. On the other hand, by the definition of normalizing map
given in [2], we have that d(Im g¥) = A\2d Im w and that TyM, and ToM
can be both identified with the subspace {Imw = 0} C C"*!. Hence
6 and 6’ can be identified with two 1-forms on {Imw = 0} and they
satisfy:

(4.3) 6 =\ .
Similarly, we obtain that the 1-forms (e e!,...,e?") are transformed
by N into the 1-forms (¢/%,¢'l,...,€e/?") on the auxiliary bundle #' :

,a]

E' — M, equal to
¢0=7*(¢), €= [(Ua)g'fr'*(xj) n afﬁ'*(G)] ,

where by z; we denote the real coordinates (Re z1,Im 2, ...,Im z,). The
computation of the image of the 1-form e2"*!, even if straightforward,
is more complicate and we omit it.

In all cases, by comparison with the properties (1)-(3), which define
the canonical element of M,, and by the explicit formulae for the right
action of a, we get that

——

g0 = b

and this concludes the proof. U

From Proposition 4.2, we get the following theorem which allows to

express any normalizing map N | in terms of Q-normalization maps.
M,a

THEOREM 4.3. Let M C C" be a CM manifold in normal form and,

for any normalization map N :V CC* — C", let M, f N (M).
[M,a] [M,a]
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Then, there exists a neighborhood U C M of the origin, such that for

any a € Hg, the normalization map : AI}I | can be written as
,a

=N 1oF, 0N

N .
u [Ma (M]

(M,a]

In particular, any local automorphism of M fixing the origin is of the
form

N

=N71oF,oN,
[M,a]

u M] [M]

for some a € Hg.

Proof. It follows immediately from Proposition 4.2 and Proposition
3.7. O

Theorem 4.3 gives a geometrical interpretation of several crucial anal-
ogies between the normalizing map : AI;I ! and the associated transforma-

Q@
tions F, of the osculating quadric. It shows that each normalizing maps
N is identifiable with the corresponding F, if expressed in a special

al

system of real coordinates, namely the Q-coordinates ['A[J\/f] on the starting

points and the Q-coordinates th/\lf | on the target points.

5. Extensions of local CR equivalences

Proposition 3.7 and Theorem 4.3 give immediate results on the ex-
tendibility of local CR equivalences between smooth and real analytic
CM manifolds. To give an example of such possible applications, we
present a proposition on the local CR equivalences between real ana-
lytic CM manifolds in normal form, which is an analogue of the theorem
for real hypersurfaces given at p.185 in [15].

Let us denote by M(d, m) the class of real analytic CM manifolds
M c C", which are embedded in normal form and such that the Q-
normalization [A[IVI] satisfies the following two requirements:

(1) the domain of definition of [./\/M] contains the ball of radius §:

Bs(O)NM={z€eC" : |2|<6}NM;
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(2) forany 0 <r < %,

[NM]—l (B.(0)N Q) C Brr(0)NM .

Notice that, by the mean value theorem, in order to see if a given
CM manifold M is in the class M(d, m), it is enough to check that (1)
holds and that, for any i, j, the following inequality holds. Let AN be
the components of the map [A[IVI] and N the components of the inverse

map [N—IVI]—]. Then (2) holds if for any i, j

ON?

623'

<m

sup
N (B ; (0)nM
pG[M]( %( YAM)

and, by the derivation rule of inverse functions, this is guaranteed if
; 1dim M -1

SUPpeB; (0)NM | 3z,
; <m.
infpe;(0)nar Idet J (N)]

Now, from Theorem 4.3 we get directly the following corollary.

COROLLARY 5.1. Let M, M’ C C" be two CM manifolds in normal
form in the class M(8,m) and let H : C™ — C™ be a local biholomor-
phism, which fixes the origin, maps M NU into a subset of M’ and so that
the moduli of the components of the second order jet j2(H)o and the
moduli of the first order jet j1(H')q are less or equal to k > 0. Then H
extends holomorphically to the open set U' = [.% ~Y(Bs, (0) N Q), where

8. = 8.(8,m, k) is a constant depending only on é, m and k.

Proof. By Theorems 2.5 and 4.3, H is of the form

(5.1) H= N = N loF,0 N,
[M,a] unmM [Ma] (M]
for some a € Hg. Since the equation of M is in normal form and H is
a normalization the 2-jet j2(H)o equals j2(Fy)o.
Now, for any a € Hg, let us denote by €(a) the supremum of the radii
r < —% such that the set B,(0)N Q is included in the domain of definition
of F, and it is contained in

FJI(B%HQ).



Normal systems of coordinates 485

From (5.1) and the definition of § and m, it is clear that H extends
holomorphically on

NL (Bg(a)(O) N Q) .

[M]
If we take the minimum of €(a) on the compact subset of Hg, corre-
sponding to those elements whose components of the second order jet
and the first order inverse jet are bounded by k, we get the constant
§* = §*(d, m, k) we were looking for. O
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