• Title/Summary/Keyword: normal aggregate

Search Result 279, Processing Time 0.022 seconds

A Study on the Fundamental Properties of Concrete Using of the Oyster Shells (굴패각 콘크리트의 기본특성에 관한 연구)

  • Koo, Hae-Shik;Jun, Hak-Su;An, Yong-Deok
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.9 no.3
    • /
    • pp.169-177
    • /
    • 2005
  • This study is to analyze the application of the oyster shells as a substitute fine aggregate of concrete. For this purpose, the fundamental experiments of the composed materials and the variations of the main factors on it were considered and then the variations of workability and strength properties of the specimens with each case were also studied. The experimental results on the properties as construction material showed that the use of oyster shells in concrete would not cause abnormal chemical reactions or lead to the formation of any new objects, the workability and strengths decreased with increase in proportion of oyster shells. The compressive strength of concrete with oyster shells is developed as much as that of normal concrete and the grain size of oyster shells is superior on 3.0~5.0mm and the percentage of substitution of them to fine aggregate about 30% from the properties of concrete with them. The relationship equation between compressive strength and tensile strength is ( ).

Physical and Mechanical Properties of Expanded Polystyrene Bead Concrete (팽창 폴리스틸렌 비드 콘크리트의 물리.역학적 특성)

  • 민정기;김성완;성찬용
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.38 no.6
    • /
    • pp.83-95
    • /
    • 1996
  • The normal cement concrete is widely used material to build the construction recently, but it has a fault to increase the dead load on account of its unit weight is large compared with strength. So, main purpose of this study was to establish the physical and mechanical properties of lightweight concrete using expanded polystyrene bead on fine aggregate and natural gravel, expanded clay and pumice stone on coarse aggregate. The test rusults of this study are summarized as follows; 1. The water-cement ratio of concrete using pumice stone was larger than that of the concrete using natural gravel and expanded clay. 2. The unit weights of concrete using pumice stone and expanded caly were shown less than 1,000g/$m^3$. 3. The compressive strengths of all types were shown less than 60kg/$cm^2$, tensile and bending strengths were shown less than l3kg/$cm^2$ and 3lkg/$cm^2$$^2$, respectively. 4. The pulse velocity of concrete was shown similar with using natural gravel and pumice stone, and shown the lowest using pumice stone. 5. The dynamic modulus of elasticity of concrete was shown considerably smaller, and shown the lowest using pumice stone. 6. The static modulus of elasticity of concrete using expanded clay and pumice stone were shown considerably smaller, and shown 22% ~29% as compared with the dynamic modulus of elasticity. 7. The stress-strain curves of concrete were shown similar, generally. And the curves were repeated at short intervals increase and decreased irregularly.

  • PDF

Predicting shear capacity of NSC and HSC slender beams without stirrups using artificial intelligence

  • El-Chabib, H.;Nehdi, M.;Said, A.
    • Computers and Concrete
    • /
    • v.2 no.1
    • /
    • pp.79-96
    • /
    • 2005
  • The use of high-strength concrete (HSC) has significantly increased over the last decade, especially in offshore structures, long-span bridges, and tall buildings. The behavior of such concrete is noticeably different from that of normal-strength concrete (NSC) due to its different microstructure and mode of failure. In particular, the shear capacity of structural members made of HSC is a concern and must be carefully evaluated. The shear fracture surface in HSC members is usually trans-granular (propagates across coarse aggregates) and is therefore smoother than that in NSC members, which reduces the effect of shear transfer mechanisms through aggregate interlock across cracks, thus reducing the ultimate shear strength. Current code provisions for shear design are mainly based on experimental results obtained on NSC members having compressive strength of up to 50MPa. The validity of such methods to calculate the shear strength of HSC members is still questionable. In this study, a new approach based on artificial neural networks (ANNs) was used to predict the shear capacity of NSC and HSC beams without shear reinforcement. Shear capacities predicted by the ANN model were compared to those of five other methods commonly used in shear investigations: the ACI method, the CSA simplified method, Response 2000, Eurocode-2, and Zsutty's method. A sensitivity analysis was conducted to evaluate the ability of ANNs to capture the effect of main shear design parameters (concrete compressive strength, amount of longitudinal reinforcement, beam size, and shear span to depth ratio) on the shear capacity of reinforced NSC and HSC beams. It was found that the ANN model outperformed all other considered methods, providing more accurate results of shear capacity, and better capturing the effect of basic shear design parameters. Therefore, it offers an efficient alternative to evaluate the shear capacity of NSC and HSC members without stirrups.

Evaluation of the Properties of Absorbent-Pervious Cement Mortar (보투수성 시멘트 모르타르의 성능평가)

  • Lho, Byeong Cheol;Joo, Myung Ki;Choi, Jong Yun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.15 no.1
    • /
    • pp.288-295
    • /
    • 2011
  • The objective of this study is to develop a proper absorbent-pervious pavement. By using single graded aggregates and SAP, permeability and water absorbability of absorbent-pervious pavement are improved, and also temperature reducing effect is found out. And several tests such as compressive and flexural strength tests, and permeability/water absorption tests of absorbent-pervious pavement are carried out to verify these kind of effects. The compressive and flexural strengths are increased according to decrease of single graded aggregate size, and increase of SAP content. And the volume of water retention and absorbability are increased according to the increase of SAP content and these are also increased in small size of single graded aggregate. And about $20^{\circ}C$ of difference is observed in surface temperature between normal asphalt pavement and absorbent-pervious pavement.

Experimental study on creep and shrinkage of high-performance ultra lightweight cement composite of 60MPa

  • Chia, Kok-Seng;Liu, Xuemei;Liew, Jat-Yuen Richard;Zhang, Min-Hong
    • Structural Engineering and Mechanics
    • /
    • v.50 no.5
    • /
    • pp.635-652
    • /
    • 2014
  • Creep and shrinkage behaviour of an ultra lightweight cement composite (ULCC) up to 450 days was evaluated in comparison with those of a normal weight aggregate concrete (NWAC) and a lightweight aggregate concrete (LWAC) with similar 28-day compressive strength. The ULCC is characterized by low density < 1500 $kg/m^3$ and high compressive strength about 60 MPa. Autogenous shrinkage increased rapidly in the ULCC at early-age and almost 95% occurred prior to the start of creep test at 28 days. Hence, majority of shrinkage of the ULCC during creep test was drying shrinkage. Total shrinkage of the ULCC during the 450-day creep test was the lowest compared to the NWAC and LWAC. However, corresponding total creep in the ULCC was the highest with high proportion attributed to basic creep (${\geq}$ ~90%) and limited drying creep. The high creep of the ULCC is likely due to its low elastic modulus. Specific creep of the ULCC was similar to that of the NWAC, but more than 80% higher than the LWAC. Creep coefficient of the ULCC was about 47% lower than that of the NWAC but about 18% higher than that of the LWAC. Among five creep models evaluated which tend to over-estimate the creep coefficient of the ULCC, EC2 model gives acceptable prediction within +25% deviations. The EC2 model may be used as a first approximate for the creep of ULCC in the designs of steel-concrete composites or sandwich structures in the absence of other relevant creep data.

Structural performance and SWOT analysis of multi-story buildings of lightweight reinforced concrete comprising local waste materials

  • Walid A., Al-Kutti;A.B.M. Saiful, Islam;Zaheer Abbas, Kazmi;Mahmoud, Sodangi;Fahad, Anwar;Muhammad, Nasir;Muhammad Arif Aziz, Ahmed;Khalid Saqer, Alotaibi
    • Earthquakes and Structures
    • /
    • v.23 no.6
    • /
    • pp.493-502
    • /
    • 2022
  • In recent decades, infrastructural development has exploded, particularly in the coastal region of Saudi Arabia. The rising demand of most consumed aggregate in construction can be effectively compensated by the alternative material like scoria which lavishly exists in the western region. Scoria is characterized as lightweight aggregate beneficially used to develop lightweight concrete (LWC) - a potential alternative of normal weight concrete (NWC) ensuring reduction in the structural element's size, increase in building height, comparatively lighter foundation, etc. Hence, the goal of this study is to incorporate scoria-based structural lightweight concrete and evaluate its impact on superstructure and foundation design beside contributing to the economy of construction. Fresh, mechanical, and rheological properties of the novel LWC have been investigated. The structural analyses employ the NWC as well as LWC based structures under seismic and wind loadings. The commercial finite element package - ETABS was employed to find out the change in structural responses and foundations. The cost estimation and SWOT analysis for superstructure and foundation have also been carried out. It was revealed that the developed LWC enabled a more flexible structural design. Notable reduction in the steel and concrete prices of LWC might be possible in the low-rise building. It is postulated that the cost-effective and eco-friendly LWC will promote the usage of scoria as an effective alternative in Saudi Arabia and GCC countries for structurally viable LWC construction.

An Experimental Study on the Strength Development of ConcreteUsing of the Oyster Shells (굴패각을 사용한 콘크리트 강도발현에 관한 실험적 연구)

  • Koo, Hae-Shik;Jun, Hak-Su
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.10 no.5
    • /
    • pp.137-147
    • /
    • 2006
  • This is an experimental study on the properties and the strength development of concrete using of the oyster shells as a substitute fine aggregate of concrete. For this purpose, the fundamental experiments of the materials and the main factors on it were considered and then the workability and many kinds of strength about the specimens were also studied. As the experimental results, there were strength differences of less than 10% between concrete with oyster shells and normal and the most excellent grain size of oyster shells is 5.0mm and less with taking uniformly and the percentage of practicable substitution of them to fine aggregate about 30%. This paper also represents the relationship equations among many kinds of strength and elastic modulus of concrete with the oyster shells decreased with increase in proportion of oyster shells and curve of it is similar about the percentage of substitution of 10%.

An Experimental Study on Developing Ultra-High Strength Powder Concrete Using Low-heat Portland Cement (저열 포틀랜드 시멘트를 사용한 초고강도 분체 콘크리트 개발에 관한 실험적 연구)

  • Jo, Byung-Wan;Yoon, Kwang-Won;Kim, Heoun;Park, Jin-Mo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.13 no.6 s.58
    • /
    • pp.135-147
    • /
    • 2009
  • In order to develop the ultra high strength concrete over 400Mpa at 28 day, Low-heat portland cement, ferro-silicon, silica-fume and steel fiber were mixed and tested under the special autoclave curing conditions. Considering the influence of Ultra high strength concrete. normal concrete is used as a comparison with low water-cement ratio possible Low-heat portland cement. Additionally, as a substitution of aggregates, we analyzed the compressive strength of Ferro Silicon by making the states of mixed and curing conditions differently. In addition, SEM films testified the development of C-S-H hydrates of Type III & Type IV, and tobermolite, zonolite due to the high temperature, high pressure of autoclave curing. Fineness of aggregate, filler and reactive materials in concrete caused 420Mpa compressive strength at 28day successfully.

Structural Behavior of Holed RC Beam mixed with Sawdust (폐톱밥 혼입 RC 유공보의 구조거동에 관한 실험적 연구)

  • Son, Ki-Sang;Lee, Jae-Hyeong
    • Journal of the Korean Society of Safety
    • /
    • v.21 no.1 s.73
    • /
    • pp.96-104
    • /
    • 2006
  • This study is to find out how the sawdust-mixed RC beam with holes acts compared to two case of normal one with sawdust without hole, without sawdust. variables are ED3H1, ED3H2, ED3H1UB, ED3H2L, ED5H1, ED5H1UB, ED5H2, ED5H2L, Normal with sawdust PLA without sawdust. All sand, aggregate, cement are in accordance with KS. mixing design is also in accordance with KS and done at D remicon company in order to decrease any error in mixing manually. ED3H1 showed 7tone of maximum load capacity having only minor tensile deformation around hole, compared to the center of the beam. ED5H2L showed almost same shape of tensile strain between hole area and center of two beam length, while having 9.5 tone load capacity, incase of two holes being in the longitudinal axis. But ED5H2 in case of two holes being in same forcing direction showed 8.4tone of load capacity while having minor tensile chape around hole and normal tensile shape in the center of beam length. Two diameter 3cm hole in longitudinal axis give more effective behavior than the other case, practically. Capacity decrease between 5cm and 3cm in eccentric position form the longitudinal axis is less than percents. There is minor capacity difference between hole diameter 3cm hole, but 13tone difference of load capacity between hole diameter 5cm.

The Physical and Mechanical Properties of No-Fines Lightweight Concrete Using Synthetic Lightweight Coarse Aggregate (인공경량조골재(人工輕量粗骨材)를 사용(使用)한 무세골재(無細骨材) 경량(輕量)콘크리트의 물리(物理)·가학적(加學的) 특성(特性))

  • Kim, Seong Wan;Min, Jeong Ki;Cho, Seung Seup;Sung, Chan Yong
    • Korean Journal of Agricultural Science
    • /
    • v.23 no.1
    • /
    • pp.39-50
    • /
    • 1996
  • The normal cement concrete is widely used material to build the construction recently, but it has a fault to increase the dead load on account of its unit weight is large compared with strength. So, many engineers are continuously searching for new materials of construction to provide greater performance at lower density. Many studies were carried out on the lightweight aggregate concrete in foreign country in the latter half of the 19th century, therefore lightweight aggregate concrete has been used successfully for many years for structural members. The main purpose of the work described in this paper were to establish its physical and mechanical properties of no-fines lightweight concrete using synthetic lightweight coarse aggregates. Test results are summarized as follows ; The water-cement ratio was shown less than 33% in use synthetic lightweight coarse aggregates, unit weights of synthetic lightweight concrete was shown less than $1,800kg/m^3$ and compressive strength was higher than $200kg/m^2$. And the pulse velocity was more than 3,000m/sec. The relationship of compressive strength between unit weight and pulse velocity was shown to be approximately linear.

  • PDF