• Title/Summary/Keyword: normal aggregate

Search Result 279, Processing Time 0.03 seconds

Physical Properties of Shale Aggregate and Characteristics of Concrete in Replacement Ratio in Daegu-Kyeongbuk Region (대경권 셰일 골재의 물성 평가 및 치환율 변화에 따른 콘크리트의 특성)

  • Lee, Seung-Han;Jung, Yong-Wook;Yeo, In-Dong;Choi, Jong-Oh;Bae, Su-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.11
    • /
    • pp.5551-5557
    • /
    • 2012
  • Sedimentary rocks dug up in construction fields are mostly stockpiled for landfill disposal, leading to an increase in construction costs and construction inefficiency. After screening, some of the sandstone can be used as aggregate; however, most of the shale ends up as industrial waste in practice. In this study, to stabilize the demand and develop resources for alternative aggregates of concrete, the potential use of shale, which is widely distributed in the Daegu-Kyeongbuk region, as a concrete aggregate was evaluated. Red and black shale exported from a Daegu excavation site was selected for use in the experiments and evaluated by comparing with hornfels, which is widely used as a coarse aggregate and is a type of andesite and metamorphosed sedimentary rock. The physical properties of the aggregate were evaluated in accordance with the test methods of KS F 2527 "crushed concrete aggregate," and the compressive strength against the shale aggregate replacement ratio was measured. The compressive strength of the concrete after 28 days was 30.8 MPa when the black shale replaced 100% of the aggregate in the concrete and 31.1 MPa when the red shale replaced 100% of the aggregate in the concrete. Compared with the compressive strength of 37.5 MPa for concrete prepared by using plain aggregate, using shale as a substitute for the aggregate produced an average compressive strength that was 82% of normal concrete.

Time-dependent properties of lightweight concrete using sedimentary lightweight aggregate and its application in prestressed concrete beams

  • Chen, How-Ji;Tsai, Wen-Po;Tang, Chao-Wei;Liu, Te-Hung
    • Structural Engineering and Mechanics
    • /
    • v.39 no.6
    • /
    • pp.833-847
    • /
    • 2011
  • We have developed a lightweight aggregate (LWA) concrete made by expanding fine sediments dredged from the Shihmen Reservoir (Taiwan) with high heat. In this study, the performance of the concrete and of prestressed concrete beams made of the sedimentary LWA were tested and compared with those made of normal-weight concrete (NC). The test results show that the lightweight concrete (LWAC) exhibited comparable time-dependent properties (i.e., compressive strength, elastic modulus, drying shrinkage, and creep) as compared with the NC samples. In addition, the LWAC beams exhibited a smaller percentage of prestress loss compared with the NC beams. Moreover, on average, the LWAC beams could resist loading up to 96% of that of the NC beams, and the experimental strengths were greater than the nominal strengths calculated by the ACI Code method. This investigation thus established that sedimentary LWA can be recommended for structural concrete applications.

Evaluation of Horizontal Force on Pile Shaft Surrounded by Vertical PET Aggregate Layer for Fluid Machinery Structure Installation in Cold Region's Plant (동토 플랜트 유체기계 구조물 설치를 위한 PET 골재적용 말뚝의 주면작용 수평력 평가)

  • Ji, Subin;Jang, Sung Min;Hwang, Soon Gap;Lee, Kicheol;Kim, Dongwook
    • The KSFM Journal of Fluid Machinery
    • /
    • v.19 no.3
    • /
    • pp.43-47
    • /
    • 2016
  • Pile foundations constructed on extremely cold regions cause serviceability problems of superstructures from repeated actions of ground freezing and thawing. Oil sand module plants are mainly constructed on seasonal frozen ground. Due to the freezing and thawing actions of grounds, vertical movements of piles have been observed. To solve these erratic pile movement problems, thin vertical layer of PET aggregates is installed around the pile shaft to prevent potential unfavorable pile movements. There is no known method to calculate "thin PET aggregate layer" -surrounded pile shaft resistance (capacity) against vertical loads; therefore, this experimental research is conducted. Specifically, in this study, horizontal (normal) pressures on pile shaft were assessed varying PET aggregate layer thickness based on the experiment.

The Study on the Fundamental Character of Crushed Stone Concrete (부슨돌 콘크리트의 기초적 성질에 관한 연구)

  • 장동일;문한영;박제선
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.13 no.3
    • /
    • pp.2342-2348
    • /
    • 1971
  • In concrete, the mater over aggregate is ever demanding each year in paralled with rapid development of Construction works from a couple of years ago. Want of most of them which is river gravel among aggregate has made us uneasy to get good gravel in quality. So far, we have counted on gravel, however, the time to turn the use of normal concrete into that of crushed concrete is closing at hand, I think. According to the results of study by Kaplan, Zeitman, Murdock, Hanada, Yamamodo, the shape of aggregate particle have a great effect on workability of concrete, as we know, is well known to the world. Crushed stone, particularly, is inconvenient to handle on account of jagged, angled particle form and rugged surface structure, give rise to inpediments in works, its unit water stands at about $15-20kg/m^3$, and w/c shows the increasing rate of approximately 5-10%, but it is unsuitable to use in terms of regidity. In order to research all of these, I have experimentalized and reviewed the physical character of aggregate and the regidity of concrete, in addition, its relative ratio of the elastic disposition as to gravel and crushed stone.

  • PDF

An Experimental Study on the Strength and Behavior of Reinforced Concrete Columns Containing Shells Substituted a Fine Aggregate (패각류를 잔골재 대체재로 사용한 철근콘크리트 기둥의 내력 및 거동에 관한 실험적 연구)

  • Koo, Hae-Shik
    • KIEAE Journal
    • /
    • v.8 no.3
    • /
    • pp.69-76
    • /
    • 2008
  • This is an experimental study on the maximum load value and structural behavior of reinforced concrete columns containing shells as a substitute fine aggregate of concrete, through making reinforced concrete test columns with shells. In this study, the main factors consist of the grain sizes and the percentage of substitution of shells to fine aggregate in two kinds of water cement ratio. The results of the study showed as followed. The maximum load value decreased with increased the rate of substitution about shells and as the grain size of shells became smaller, the load values of them were somewhat changed higher but it is important that we must consider absorption rate of shells sufficiently. If we have a proper water cement ratio in column productions containing the shells, we can meet the requirement of the percentage of substitution until 30%. The deflection and deformation properties of reinforced concrete columns with shells represented typical curves like that of normal reinforced concrete. But as the failture types, they are able to make some change without being out of the fundamental graph forms. After the analyzing structural behaviors and the properties of reinforced concrete test columns containing shells, the most excellent grain size of shells represented 3.0mm and less with taking uniformly, and the percentage of practicable substitution of them to fine aggregate was about 30%.

Prediction of compressive strength of concrete using neural networks

  • Al-Salloum, Yousef A.;Shah, Abid A.;Abbas, H.;Alsayed, Saleh H.;Almusallam, Tarek H.;Al-Haddad, M.S.
    • Computers and Concrete
    • /
    • v.10 no.2
    • /
    • pp.197-217
    • /
    • 2012
  • This research deals with the prediction of compressive strength of normal and high strength concrete using neural networks. The compressive strength was modeled as a function of eight variables: quantities of cement, fine aggregate, coarse aggregate, micro-silica, water and super-plasticizer, maximum size of coarse aggregate, fineness modulus of fine aggregate. Two networks, one using raw variables and another using grouped dimensionless variables were constructed, trained and tested using available experimental data, covering a large range of concrete compressive strengths. The neural network models were compared with regression models. The neural networks based model gave high prediction accuracy and the results demonstrated that the use of neural networks in assessing compressive strength of concrete is both practical and beneficial. The performance of model using the grouped dimensionless variables is better than the prediction using raw variables.

Proposal for Compressive Strength Development Model of Lightweight Aggregate Concrete Using Expanded Bottom Ash and Dredged Soil Granules (바텀애시 및 준설토 기반 인공경량골재 콘크리트의 압축강도 발현 모델 제시)

  • Lee, Kyung-Ho;Yang, Keun-Hyeok
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.34 no.7
    • /
    • pp.19-26
    • /
    • 2018
  • This study tested 25 lightweight aggregate concrete (LWAC) mixtures using the expanded bottom ash and dredged soil granules to examine the compressive strength gain of such concrete with different ages. The test parameters investigated were water-to-cement ratios and the natural sand content for the replacement of lightweight fine aggregate. The compressive strength gain rate in the basic equation specified in fib model code was experimentally determined in each mixture and then empirically formulated as a function of the water-to-cement ratio and oven-dried density of concrete. When compared with 28-day compressive strength, the tested LWAC mixtures exhibited relatively low gain ratios (0.49~0.82) at an age of 3 days whereas the gain ratios (1.16~1.41) at 91 days were higher than that (1.05~1.15) of the conventional normal-weight concrete. Thus, the fib model equations tend to overestimate the early strength gain of LWAC but underestimate the long-term strength gain. The proposed equations are in good agreement with the measured compressive strength development of LWAC at different ages, indicating that the mean and standard deviation of the normalized root mean square errors determined in each mixture are 0.101 and 0.053, respectively.

A Study on the Quality Characteristic of Mortar Using Lightweight Aggregate with Waste PET Bottle (폐 PET 병을 이용한 경량모르터의 품질특성에 관한 연구)

  • Choi Yun-Wang
    • Resources Recycling
    • /
    • v.12 no.5
    • /
    • pp.16-22
    • /
    • 2003
  • Lightweight aggregate for concrete was manufactured from recycling the waste PET bottles (PET Bottle Lightweight Aggregate, LAPET). The qualities of LAPET and its mortar were investigated. Specific gravity and unit weight of LAPET was very low in comparison with river sand like as 1.39, 844 kg/㎥ respectively. In addition, compressive strength of concrete significantly decreased because of specific gravity of aggregate decreased with increases in containing ratio. When LAPET was contained to 25% and 50% of river sand, compressive strength of concrete at 28 days was indicated more 30MPa. Most of LAPET was generally showed to round shape and fluidity of mortar increased significantly due to sleeking the surface texture of LAPET. On the other hand, capillary absorption of mortar with LAPET was greatly increased in comparison with that of mortar without LAPET because of LAPET was composed of singular gradation. Absorption of LAPET was 0% because the interior structure of LAPET consists of PET like as organic high polymer. Therefore the fault of normal lightweight aggregate, absorption, will be improved. It could expect several advantages that the pollution of environment will be previously prevent and the waste resources could be recycled if LAPET is reused as aggregate for Lightweight concrete.

Mechanical Properties of Recycled Coarse Aggregate concrete using Two-Stage Mixing Approach (TSMA 방법을 이용한 순환 굵은골재 콘크리트의 기계적 성능)

  • Kwon, Seung Jun;Lim, Hee Seob;Lee, Han Seung;Lim, Myung Kwan
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.4
    • /
    • pp.60-67
    • /
    • 2018
  • As the lack of specific aggregation intensifies, the development of alternative resources is urgent. Construction waste is increasing every year, but recycled aggregate is used as a low value added material. Various studies are currently underway at the national level. In this paper, the mechanical performance of the concrete according to the concrete mixing method and the replacement amount of the circulating coarse aggregate was compared and evaluated. Concrete mixing method was normal mixing approach(NMA) method, two-stage mixing approach1 (TSMA1) method, two-stage mixing approach2 (TSMA2) method. Fresh concrete was tested for air content, slump test, and unit volume weight. Compressive strength and flexural strength were tested in hardened concrete. According to the TSMA method, the mechanical performance difference of concrete is shown, and the strength is decreased according to the circulating coarse aggregate replacement amount.

Bond Behavior of Recycled Coarse Aggregate Concrete Deteriorated by Freezing and Thawing (동결융해를 받은 순환 굵은골재 콘크리트의 부착성능)

  • Choi, Ki-Sun;Lee, Min-Jung;Yun, Hyun-Do;Kang, Ki-Woong;You, Young-Chan;Kim, Keung-Hwan
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.1097-1100
    • /
    • 2008
  • The purpose of this study to investigate the bond strength of recycled coarse aggregate concrete deteriorated by freezing and thawing. Concrete specimens with recycled coarse aggregate representing lower limit of the quality standard (water absorption : 3.0%, specific gravity : $2.5g.cm^3$) were manufactured and tested. The replacement ratio (0, 30, 60 and 100%) of recycled coarse aggregate and freezing-thawing cycles were considered in this test. From the test results, it was found that the bond strength of normal strength concrete is not affected by the replacement ratio of recycled coarse aggregate under freezing and thawing conditions. Also, the bond strength of the natural and recycled coarse aggregate concrete using AE admixtures was not decreased by frost action.

  • PDF