• 제목/요약/키워드: nonparametric statistics

검색결과 425건 처리시간 0.034초

Practical statistics in pain research

  • Kim, Tae Kyun
    • The Korean Journal of Pain
    • /
    • 제30권4호
    • /
    • pp.243-249
    • /
    • 2017
  • Pain is subjective, while statistics related to pain research are objective. This review was written to help researchers involved in pain research make statistical decisions. The main issues are related with the level of scales that are often used in pain research, the choice of statistical methods between parametric or nonparametric statistics, and problems which arise from repeated measurements. In the field of pain research, parametric statistics used to be applied in an erroneous way. This is closely related with the scales of data and repeated measurements. The level of scales includes nominal, ordinal, interval, and ratio scales. The level of scales affects the choice of statistics between parametric or non-parametric methods. In the field of pain research, the most frequently used pain assessment scale is the ordinal scale, which would include the visual analogue scale (VAS). There used to be another view, however, which considered the VAS to be an interval or ratio scale, so that the usage of parametric statistics would be accepted practically in some cases. Repeated measurements of the same subjects always complicates statistics. It means that measurements inevitably have correlations between each other, and would preclude the application of one-way ANOVA in which independence between the measurements is necessary. Repeated measures of ANOVA (RMANOVA), however, would permit the comparison between the correlated measurements as long as the condition of sphericity assumption is satisfied. Conclusively, parametric statistical methods should be used only when the assumptions of parametric statistics, such as normality and sphericity, are established.

Nonparametric Inference for the Recurrent Event Data with Incomplete Observation Gaps

  • Kim, Jin-Heum;Nam, Chung-Mo;Kim, Yang-Jin
    • 응용통계연구
    • /
    • 제25권4호
    • /
    • pp.621-632
    • /
    • 2012
  • Recurrent event data can be easily found in longitudinal studies such as clinical trials, reliability fields, and the social sciences; however, there are a few observations that disappear temporarily in sight during the follow-up and then suddenly reappear without notice like the Young Traffic Offenders Program(YTOP) data collected by Farmer et al. (2000). In this article we focused on inference for a cumulative mean function of the recurrent event data with these incomplete observation gaps. Defining a corresponding risk set would be easily accomplished if we know the exact intervals where the observation gaps occur. However, when they are incomplete (if their starting times are known but their terminating times are unknown) we need to estimate a distribution function for the terminating times of the observation gaps. To accomplish this, we treated them as interval-censored and then estimated their distribution using the EM algorithm proposed by Turnbull (1976). We proposed a nonparametric estimator for the cumulative mean function and also a nonparametric test to compare the cumulative mean functions of two groups. Through simulation we investigated the finite-sample performance of the proposed estimator and proposed test. Finally, we applied the proposed methods to YTOP data.

A Nonparametric Multivariate Test for a Monotone Trend among k Samples

  • Hyun, Noo-Rie;Song, Hae-Hiang
    • 응용통계연구
    • /
    • 제22권5호
    • /
    • pp.1047-1057
    • /
    • 2009
  • The nonparametric bivariate two-sample test of Bennett (1967) is extended to the multivariate k sample test. This test has been easily modified for a monotone trend among k samples. Often in applications it is important to consider a set of multivariate response variables simultaneously, rather than individually, and also important to consider testing k samples altogether. Different approaches of estimating the null covariance matrices of the test statistics resulted in the same limiting form. The multivariate k sample test is applied to the non-normal data of a randomized trial conducted for a period of four weeks in mental hospitals. The purpose of the trial is to compare the efficacy of three different interventions for a relief of the frequently occurring problems of constipation, caused as a side effect of antipsychotic drugs during hospitalization. The bowel movement status of patient for a week is summarized into a single severity score, and severity scores of four weeks comprise a four-dimensional multivariate variable. It is desirable with this trial data to consider a multivariate testing among k samples.

신용평가모형에서 두 분포함수의 동일성 검정을 위한 비모수적인 검정방법 (Nonparametric homogeneity tests of two distributions for credit rating model validation)

  • 홍종선;김지훈
    • Journal of the Korean Data and Information Science Society
    • /
    • 제20권2호
    • /
    • pp.261-272
    • /
    • 2009
  • 신용평가모형에서 두 집단의 판별력 검정방법 중의 하나로 두 분포함수의 동일성 검정을 위한 비모수적인 Kolmogorov-Smirnov (K-S) 검정방법이 대표적으로 적용되고 있다. 본 연구에서는 신용평가모형에서 두 분포함수의 동일성 검정을 위하여 K-S 검정 방법 외에 Cramer-Von Mises, Anderson-Darling, Watson 검정방법들을 소개하고 Joseph (2005)의 기준에 대응하는 판단기준을 제안한다. 또한 신용평가 자료와 유사한 상황 하에서의 모의실험을 통해서 불량률, 표본크기 그리고 제II종 오류율을 고려한 대안적인 판단기준을 제시하고 그 적용방법에 대해서 살펴본다.

  • PDF

Nonparametric Estimation of Mean Residual Life Function under Random Censorship

  • Park, Byung-Gu;Sohn, Joong-Kweon;Lee, Sang-Bock
    • Journal of the Korean Statistical Society
    • /
    • 제22권2호
    • /
    • pp.147-157
    • /
    • 1993
  • In the survivla analysis the problem of estimating mean residual life function (MRLF) under random censoring is very important. In this paper we propose and study a nonparametric estimator of MRLF, which is a functional form based on the estimator of the survival function due to Susarla and Van Ryzin (1980). The proposed estimator is shown to be better than some other estimators in terms of mean square errors for the exponential and Weibull cases via Monte Carlo simulation studies.

  • PDF

Influence Diagnostic Measure for Spline Estimator

  • Lee, In-Suk;Cho, Gyo-Young;Jung, Won-Tae
    • 품질경영학회지
    • /
    • 제23권4호
    • /
    • pp.58-63
    • /
    • 1995
  • To access the quality of a fit to a set of data it is always useful to conduct a posteriori analysis involving the examination of residuals, detection of influential data values, etc. Smoothing splines are a type of nonparametric regression estimators for the diagnostic problem. And leverage value, Cook's distance, and DFFITS are used for detecting influential data. Since high leverage points will always have small residuals, the new diagnostic measures including of properties of leverage and residuals are needed. In this paper, we propose FVARATIO version as diagnostic measure in nonparametric regression. Also we consider the rough bound as analogy with linear regression case.

  • PDF

안정성 연구에서의 사용기간에 관한 비모수적 추론 (Nonprametric Inference of Shelf-life in Drug's Stability Study)

  • 김태규;박상규;하명호
    • 품질경영학회지
    • /
    • 제38권1호
    • /
    • pp.96-100
    • /
    • 2010
  • The shelf-life of pharmaceutical products is the time that the average product characteristic remains within an approved specification after manufacture. Since the true shelf-life of a drug product is typically unknown, it has to be estimated based on assay results of the drug characteristic from a stability study usually conducted during the process of drug development. The nonparametric statistical methods of assessing the shelf-life of drug are considered with the current FDA regulations. Some simulation studies of nonparametric methods are also presented with the discussion.

A SIMPLE VARIANCE ESTIMATOR IN NONPARAMETRIC REGRESSION MODELS WITH MULTIVARIATE PREDICTORS

  • Lee Young-Kyung;Kim Tae-Yoon;Park Byeong-U.
    • Journal of the Korean Statistical Society
    • /
    • 제35권1호
    • /
    • pp.105-114
    • /
    • 2006
  • In this paper we propose a simple and computationally attractive difference-based variance estimator in nonparametric regression models with multivariate predictors. We show that the estimator achieves $n^{-1/2}$ rate of convergence for regression functions with only a first derivative when d, the dimension of the predictor, is less than or equal to 4. When d > 4, the rate turns out to be $n^{-4/(d+4)}$ under the first derivative condition for the regression functions. A numerical study suggests that the proposed estimator has a good finite sample performance.

A Comparative Study on the Performance of Bayesian Partially Linear Models

  • Woo, Yoonsung;Choi, Taeryon;Kim, Wooseok
    • Communications for Statistical Applications and Methods
    • /
    • 제19권6호
    • /
    • pp.885-898
    • /
    • 2012
  • In this paper, we consider Bayesian approaches to partially linear models, in which a regression function is represented by a semiparametric additive form of a parametric linear regression function and a nonparametric regression function. We make a comparative study on the performance of widely used Bayesian partially linear models in terms of empirical analysis. Specifically, we deal with three Bayesian methods to estimate the nonparametric regression function, one method using Fourier series representation, the other method based on Gaussian process regression approach, and the third method based on the smoothness of the function and differencing. We compare the numerical performance of three methods by the root mean squared error(RMSE). For empirical analysis, we consider synthetic data with simulation studies and real data application by fitting each of them with three Bayesian methods and comparing the RMSEs.