• Title/Summary/Keyword: nonoscillatory

Search Result 18, Processing Time 0.023 seconds

OSCILLATION AND NONOSCILLATION THEOREMS FOR NONLINEAR DIFFERENTIAL EQUATIONS OF SECOND ORDER

  • Kim, Rak-Joong;Kim, Dong-Il
    • Journal of the Korean Mathematical Society
    • /
    • v.44 no.6
    • /
    • pp.1453-1467
    • /
    • 2007
  • By means of a Riccati transform some oscillation or nonoscillation criteria are established for nonlinear differential equations of second order $$(E_1)\;[p(t)|x#(t)|^{\alpha}sgn\;x#(t)]#+q(t)|x(\tau(t)|^{\alpha}sgn\;x(\tau(t))=0$$. $$(E_2),\;(E_3)\;and\;(E_4)\;where\;0<{\alpha}$$ and $${\tau}(t){\leq}t,\;{\tau}#(t)>0,\;{\tau}(t){\rightarrow}{\infty}\;as\;t{\rightarrow}{\infty}$$. In this paper we improve some previous results.

OSCILLATION CRITERIA FOR SECOND-ORDER NONLINEAR DIFFERENCE EQUATIONS WITH 'SUMMATION SMALL' COEFFICIENT

  • KANG, GUOLIAN
    • Bulletin of the Korean Mathematical Society
    • /
    • v.42 no.2
    • /
    • pp.245-256
    • /
    • 2005
  • We consider the second-order nonlinear difference equation (1) $$\Delta(a_nh(x_{n+1}){\Delta}x_n)+p_{n+1}f(x_{n+1})=0,\;n{\geq}n_0$$ where ${a_n},\;{p_n}$ are sequences of integers with $a_n\;>\;0,\;\{P_n\}$ is a real sequence without any restriction on its sign. hand fare real-valued functions. We obtain some necessary conditions for (1) existing nonoscillatory solutions and sufficient conditions for (1) being oscillatory.

OSCILLATION AND ASYMPTOTIC STABILITY BEHAVIOR OF A THIRD ORDER LINEAR IMPULSIVE EQUATION

  • WAN ANHUA;MAO WEIHUA
    • Journal of applied mathematics & informatics
    • /
    • v.18 no.1_2
    • /
    • pp.405-417
    • /
    • 2005
  • In this paper, the oscillation and asymptotic stability behavior of a third order linear impulsive equation are investigated. A lemma is presented to deal with the sign relation of the nonoscillatory solutions and their derived functions. By the lemma explicit sufficient conditions are obtained for all solutions either oscillating or asymptotically tending to zero. Two illustrative examples are proposed to demonstrate the effectiveness of the conditions.

A Numerical Study on the Oscillatory Impinging Jet (요동하는 충돌제트에 관한 수치해석적 연구)

  • Park, Jae-Hyun;Suh, Young-Kweon
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.945-949
    • /
    • 2003
  • In this paper, we present that now and heat transfer characteristics of oscillatory impinging jet which have been numerically investigated using parallel computations. Numerical value were obtained for dimensionless distance H=4, dimensionless outlet length L=45 and Reynolds number Re= 1500. It was found that the oscillatory impinging jet generated the regular heat transfer area even though the maximum heat transfer is lower than nonoscillatory impinging jet. We also found that heat transfer depends on the period of nozzle for the oscillatory impinging jet.

  • PDF

Asymptotic Results for a Class of Fourth Order Quasilinear Difference Equations

  • Thandapani, Ethiraju;Pandian, Subbiah;Dhanasekaran, Rajamannar
    • Kyungpook Mathematical Journal
    • /
    • v.46 no.4
    • /
    • pp.477-488
    • /
    • 2006
  • In this paper, the authors first classify all nonoscillatory solutions of equation (1) $${\Delta}^2|{\Delta}^2{_{y_n}}|^{{\alpha}-1}{\Delta}^2{_{y_n}}+q_n|y_{{\sigma}(n)}|^{{\beta}-1}y_{{\sigma}(n)}=o,\;n{\in}\mathbb{N}$$ into six disjoint classes according to their asymptotic behavior, and then they obtain necessary and sufficient conditions for the existence of solutions in these classes. Examples are inserted to illustrate the results.

  • PDF

A SECOND ORDER UPWIND METHOD FOR LINEAR HYPERBOLIC SYSTEMS

  • Sohn, Sung-Ik;Shin, Jun-Yong
    • Communications of the Korean Mathematical Society
    • /
    • v.17 no.1
    • /
    • pp.103-120
    • /
    • 2002
  • A second order upwind method for linear hyperbolic systems is studied in this paper. The method approximates solutions as piecewise linear functions, and state variables and slopes of the linear functions for next time step are computed separately. We present a new method for the computation of slopes, derived from an upwinding difference for a derivative. For nonoscillatory solutions, a monotonicity algorithm is also proposed by modifying an existing algorithm. To validate our second order upwind method, numerical results for linear advection equations and linear systems for elastic and acoustic waves are given.

Speed Control of a Diesel Engine by Means of the Model Matching Method (모델 맷칭법에 의한 디젤기관의 속도제어)

  • 유희환;하주식
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.20 no.3
    • /
    • pp.131-137
    • /
    • 1996
  • The existing digital governors are in the beginning stage. Placing the focus on the marine site, most of the digital governors developed are still using the simple PID algorithm. But, the performance of a diesel engine is widely changed according to the parameters of the PID controller. So, this article describes a new method to adjust the parameters of the PID controller in a marine digital governor. In this paper, the diesel engine is considered as a nonoscillatory second order system. A new method to adjust the parameters of the PID controller for speed control of a diesel engine is proposed by means of the model matching method. Also, the simulations by numerical methods are carried out in cases of the exact understanding or out of the parameters of a diesel engine respectively. And this paper confirms that the proposed new method here is superior to Ziegler & Nichols's method through the comparisons and analysis of the characteristics of indicial responses.

  • PDF