• 제목/요약/키워드: nonoscillation

검색결과 18건 처리시간 0.021초

OSCILLATION CRITERIA OF DIFFERENTIAL EQUATIONS OF SECOND ORDER

  • Kim, Rae Joong
    • Korean Journal of Mathematics
    • /
    • 제19권3호
    • /
    • pp.309-319
    • /
    • 2011
  • We give sufficient conditions that the homogeneous differential equations : for $t{\geq}t_0$(> 0), $$x^{{\prime}{\prime}}(t)+q(t)x^{\prime}(t)+p(t)x(t)=0,\\x^{{\prime}{\prime}}(t)+q(t)x^{\prime}(t)+F(t,x({\phi}(t)))=0$$, are oscillatory where $0{\leq}{\phi}(t)$, 0 < ${\phi}^{\prime}(t)$, $\lim_{t\to{\infty}}{\phi}(t)={\infty}$. and $F(t,u){\cdot}sgn$ $u{\leq}p(t)|u|$. We obtain comparison theorems.

WEIGHTED HARDY INEQUALITIES WITH SHARP CONSTANTS

  • Kalybay, Aigerim;Oinarov, Ryskul
    • 대한수학회지
    • /
    • 제57권3호
    • /
    • pp.603-616
    • /
    • 2020
  • In the paper, we establish the validity of the weighted discrete and integral Hardy inequalities with periodic weights and find the best possible constants in these inequalities. In addition, by applying the established discrete Hardy inequality to a certain second-order difference equation, we discuss some oscillation and nonoscillation results.

OSCILLATION AND ASYMPTOTIC STABILITY BEHAVIOR OF A THIRD ORDER LINEAR IMPULSIVE EQUATION

  • WAN ANHUA;MAO WEIHUA
    • Journal of applied mathematics & informatics
    • /
    • 제18권1_2호
    • /
    • pp.405-417
    • /
    • 2005
  • In this paper, the oscillation and asymptotic stability behavior of a third order linear impulsive equation are investigated. A lemma is presented to deal with the sign relation of the nonoscillatory solutions and their derived functions. By the lemma explicit sufficient conditions are obtained for all solutions either oscillating or asymptotically tending to zero. Two illustrative examples are proposed to demonstrate the effectiveness of the conditions.

OSCILLATORY OF UNSTABLE TYPE SECOND-ORDER NEUTRAL DIFFERENCE EQUATIONS

  • Zhang, Zhenguo;Ping, Bi;Dong, Wenlei
    • Journal of applied mathematics & informatics
    • /
    • 제9권1호
    • /
    • pp.87-99
    • /
    • 2002
  • We consider the problem of oscillation and nonoscillation solutions for unstable type second-order neutral difference equation : $\Delta^2(x(n))-p(n)x(n-\tau))=q(n)x(g(n))$. (1) In this paper, we obtain some conditions for the bounded solutions of Eq(1) to be oscillatory and for the existence of the nonoscillatory solutions.

OSCILLATION OF SUB LINEAR DIFFERENCE EQUATIONS WITH POSITIVE NEUTRAL TERM

  • LI QIAOLUAN;WANG CHUNGIAO;LI FANG;LIANG HAIYAN;ZHANG ZHENGUO
    • Journal of applied mathematics & informatics
    • /
    • 제20권1_2호
    • /
    • pp.305-314
    • /
    • 2006
  • In this paper, we consider the oscillation of first order sublinear difference equation with positive neutral term $\Delta(\chi(n)+p(n)\chi(\tau(n)))+f(n,\chi(g1(n)),\cdots,\chi(gm(n)))=0$. We obtain necessary and sufficient conditions for the solutions of this equation to be oscillatory.

OSCILLATION OF SECOND ORDER SUBLINEAR NEUTRAL DELAY DYNAMIC EQUATIONS VIA RICCATI TRANSFORMATION

  • SETHI, ABHAY KUMAR
    • Journal of applied mathematics & informatics
    • /
    • 제36권3_4호
    • /
    • pp.213-229
    • /
    • 2018
  • In this work, we establish oscillation of the second order sublinear neutral delay dynamic equations of the form:$$(r(t)((x(t)+p(t)x({\tau}(t)))^{\Delta})^{\gamma})^{\Delta}+q(t)x^{\gamma}({\alpha}(t))+v(t)x^{\gamma}({\eta}(t))=0$$ on a time scale T by means of Riccati transformation technique, under the assumptions $${\displaystyle\smashmargin{2}{\int\nolimits^{\infty}}_{t_0}}\({\frac{1}{r(t)}}\)^{\frac{1}{\gamma}}{\Delta}t={\infty}$$, and ${\displaystyle\smashmargin{2}{\int\nolimits^{\infty}}_{t_0}}\({\frac{1}{r(t)}}\)^{\frac{1}{\gamma}}{\Delta}t$ < ${\infty}$, for various ranges of p(t), where 0 < ${\gamma}{\leq}1$ is a quotient of odd positive integers.

CLASSIFICATION OF NONOSCILLATORY SOLUTIONS OF SECOND ORDER SELF-ADJOINT NEUTRAL DIFFERENCE EQUATIONS

  • Liu, Yujun;Liu, Zahaoshuang;Zhang, Zhenguo
    • Journal of applied mathematics & informatics
    • /
    • 제14권1_2호
    • /
    • pp.237-249
    • /
    • 2004
  • Consider the second order self-adjoint neutral difference equation of form $\Delta(a_n$\mid$\Delta(x_n\;-\;{p_n}{x_{{\tau}_n}}$\mid$^{\alpha}sgn{\Delta}(x_n\;-\;{p_n}{x_{{\tau}_n}}\;+\;f(n,\;{x_{g_n}}\;=\;0$. In this paper, we will give the classification of nonoscillatory solutions of the above equation; and by the fixed point theorem, we present some existence results for some kinds of nonoscillatory solutions of the equation.

Necessary and Sufficient Condition for the Solutions of First-Order Neutral Differential Equations to be Oscillatory or Tend to Zero

  • Santra, Shyam Sundar
    • Kyungpook Mathematical Journal
    • /
    • 제59권1호
    • /
    • pp.73-82
    • /
    • 2019
  • In this work, we give necessary and sufficient conditions under which every solution of a class of first-order neutral differential equations of the form $$(x(t)+p(t)x({\tau}(t)))^{\prime}+q(t)Hx({\sigma}(t)))=0$$ either oscillates or converges to zero as $t{\rightarrow}{\infty}$ for various ranges of the neutral coefficient p. Our main tools are the Knaster-Tarski fixed point theorem and the Banach's contraction mapping principle.