• 제목/요약/키워드: nonoscillation

검색결과 18건 처리시간 0.021초

Oscillation and Nonoscillation of Nonlinear Neutral Delay Differential Equations with Several Positive and Negative Coefficients

  • Elabbasy, Elmetwally M.;Hassan, Taher S.;Saker, Samir H.
    • Kyungpook Mathematical Journal
    • /
    • 제47권1호
    • /
    • pp.1-20
    • /
    • 2007
  • In this paper, oscillation and nonoscillation criteria are established for nonlinear neutral delay differential equations with several positive and negative coefficients $$[x(t)-R(t)x(t-r)]^{\prime}+\sum_{i=1}^{m}Pi(t)H_i(x(t-{\tau}_i))-\sum_{j=1}^{n}Q_j(t)H_j(x(t-{\sigma}_j))=0$$. Our criteria improve and extend many results known in the literature. In addition we prove that under appropriate hypotheses, if every solution of the associated linear equation with constant coefficients, $$y^{\prime}(t)+\sum_{i=1}^{m}(p_i-\sum_{k{\in}J_i}qk)y(t-{\tau}_i)=0$$, oscillates, then every solution of the nonlinear equation also oscillates.

  • PDF

OSCILLATION AND NONOSCILLATION THEOREMS FOR NONLINEAR DIFFERENTIAL EQUATIONS OF SECOND ORDER

  • Kim, Rak-Joong;Kim, Dong-Il
    • 대한수학회지
    • /
    • 제44권6호
    • /
    • pp.1453-1467
    • /
    • 2007
  • By means of a Riccati transform some oscillation or nonoscillation criteria are established for nonlinear differential equations of second order $$(E_1)\;[p(t)|x#(t)|^{\alpha}sgn\;x#(t)]#+q(t)|x(\tau(t)|^{\alpha}sgn\;x(\tau(t))=0$$. $$(E_2),\;(E_3)\;and\;(E_4)\;where\;0<{\alpha}$$ and $${\tau}(t){\leq}t,\;{\tau}#(t)>0,\;{\tau}(t){\rightarrow}{\infty}\;as\;t{\rightarrow}{\infty}$$. In this paper we improve some previous results.

OSCILLATION AND NONOSCILLATION CRITERIA FOR DIFFERENTIAL EQUATIONS OF SECOND ORDER

  • Kim, RakJoong
    • Korean Journal of Mathematics
    • /
    • 제19권4호
    • /
    • pp.391-402
    • /
    • 2011
  • We give necessary and sufficient conditions such that the homogeneous differential equations of the type: $$(r(t)x^{\prime}(t))^{\prime}+q(t)x^{\prime}(t)+p(t)x(t)=0$$ are nonoscillatory where $r(t)$ > 0 for $t{\in}I=[{\alpha},{\infty})$, ${\alpha}$ > 0. Under the suitable conditions we show that the above equation is nonoscillatory if and only if for ${\gamma}$ > 0, $$(r(t)x^{\prime}(t))^{\prime}+q(t)x^{\prime}(t)+p(t)x(t-{\gamma})=0$$ is nonoscillatory. We obtain several comparison theorems.

OSCILLATION AND NONOSCILLATION OF HIGHER-ORDER DIFFERENCE EQUATIONS WITH NONLINEAR NEUTRAL TERMS

  • Zhang, Zhenguo;Yang, Aijun;Di, Congna
    • 한국수학교육학회지시리즈B:순수및응용수학
    • /
    • 제14권2호
    • /
    • pp.49-62
    • /
    • 2007
  • In this paper, the oscillation and existence of nonoscillatory solutions of odd order difference equations with nonlinear neutral terms are studied respectively. Some new criteria are established. Furthermore, some examples are given to illustrate the advance of our results.

  • PDF

OSCILLATION AND ASYMPTOTIC BEHAVIOR FOR DELAY DIFFERENTIAL EQUATIONS

  • Choi, Sung-Kyu;Koo, Nam-Jip;Ryu, Hyun-Sook
    • Journal of applied mathematics & informatics
    • /
    • 제7권2호
    • /
    • pp.641-652
    • /
    • 2000
  • In this paper we will survey the recent results about oscillation and asymptotic behavior for the linear differential equation with a single delay x'9t)+p(t)x(t-r)=0, $t\geqt_1$.

OSCILLATION OF NEUTRAL DIFFERENCE EQUATIONS

  • Koo, Nam Jip
    • 충청수학회지
    • /
    • 제12권1호
    • /
    • pp.125-131
    • /
    • 1999
  • We obtain some sufficient conditions for oscillation of the neutral difference equation with positive and negative coefficients $${\Delta}(x_n-cx_{n-m})+px_{n-k}-qx_{n-l}=0$$, where ${\Delta}$ denotes the forward difference operator, m, k, l, are nonnegative integers, and $c{\in}[0,1),p,q{\in}\mathbb{R}^+$.

  • PDF