• Title/Summary/Keyword: nonlocal source

검색결과 13건 처리시간 1.523초

SOME TYPES OF REACTION-DIFFUSION SYSTEMS WITH NONLOCAL BOUNDARY CONDITIONS

  • Han, Yuzhu;Gao, Wenjie
    • 대한수학회보
    • /
    • 제50권6호
    • /
    • pp.1765-1780
    • /
    • 2013
  • This paper deals with some types of semilinear parabolic systems with localized or nonlocal sources and nonlocal boundary conditions. The authors first derive some global existence and blow-up criteria. And then, for blow-up solutions, they study the global blow-up property as well as the precise blow-up rate estimates, which has been seldom studied until now.

Effect of the gravity on a nonlocal thermoelastic medium with a heat source using fractional derivative

  • Samia M. Said
    • Geomechanics and Engineering
    • /
    • 제37권6호
    • /
    • pp.591-597
    • /
    • 2024
  • The purpose of this paper is to depict the effect of gravity on a nonlocal thermoelastic medium with initial stress. The Lord-Shulman and Green-Lindsay theories with fractional derivative order serve as the foundation for the formulation of the fundamental equations for the problem. To address the problem and acquire the exact expressions of physical fields, appropriate non-dimensional variables and normal mode analysis are used. MATLAB software is used for numerical calculations. The projected outcomes in the presence and absence of the gravitational field, along with a nonlocal parameter, are compared. Additional comparisons are made for various fractional derivative order values. It is evident that the variation of physical variables is significantly influenced by the fractional derivative order, nonlocal parameter and gravity field.

BLOW UP OF SOLUTIONS TO A SEMILINEAR PARABOLIC SYSTEM WITH NONLOCAL SOURCE AND NONLOCAL BOUNDARY

  • Peng, Congming;Yang, Zuodong
    • Journal of applied mathematics & informatics
    • /
    • 제27권5_6호
    • /
    • pp.1435-1446
    • /
    • 2009
  • In this paper we investigate the blow up properties of the positive solutions to a semi linear parabolic system with coupled nonlocal sources $u_t={\Delta}u+k_1{\int}_{\Omega}u^{\alpha}(y,t)v^p(y,t)dy,\;v_t={\Delta}_v+k_2{\int}_{\Omega}u^q(y,t)v^{\beta}(y,t)dy$ with non local Dirichlet boundary conditions. We establish the conditions for global and non-global solutions respectively and obtain its blow up set.

  • PDF

Determination of Unknown Time-Dependent Heat Source in Inverse Problems under Nonlocal Boundary Conditions by Finite Integration Method

  • Areena Hazanee;Nifatamah Makaje
    • Kyungpook Mathematical Journal
    • /
    • 제64권2호
    • /
    • pp.353-369
    • /
    • 2024
  • In this study, we investigate the unknown time-dependent heat source function in inverse problems. We consider three general nonlocal conditions; two classical boundary conditions and one nonlocal over-determination, condition, these genereate six different cases. The finite integration method (FIM), based on numerical integration, has been adapted to solve PDEs, and we use it to discretize the spatial domain; we use backward differences for the time variable. Since the inverse problem is ill-posed with instability, we apply regularization to reduce the instability. We use the first-order Tikhonov's regularization together with the minimization process to solve the inverse source problem. Test examples in all six cases are presented in order to illustrate the accuracy and stability of the numerical solutions.

Existence and Behavior Results for a Nonlocal Nonlinear Parabolic Equation with Variable Exponent

  • Sert, Ugur;Ozturk, Eylem
    • Kyungpook Mathematical Journal
    • /
    • 제60권1호
    • /
    • pp.145-161
    • /
    • 2020
  • In this article, we study the solvability of the Cauchy-Dirichlet problem for a class of nonlinear parabolic equations with nonstandard growth and nonlocal terms. We prove the existence of weak solutions of the considered problem under more general conditions. In addition, we investigate the behavior of the solution when the problem is homogeneous.

QUALITATIVE PROPERTIES OF WEAK SOLUTIONS FOR p-LAPLACIAN EQUATIONS WITH NONLOCAL SOURCE AND GRADIENT ABSORPTION

  • Chaouai, Zakariya;El Hachimi, Abderrahmane
    • 대한수학회보
    • /
    • 제57권4호
    • /
    • pp.1003-1031
    • /
    • 2020
  • We consider the following Dirichlet initial boundary value problem with a gradient absorption and a nonlocal source $$\frac{{\partial}u}{{\partial}t}-div({\mid}{\nabla}u{\mid}^{p-2}{\nabla}u)={\lambda}u^k{\displaystyle\smashmargin{2}{\int\nolimits_{\Omega}}}u^sdx-{\mu}u^l{\mid}{\nabla}u{\mid}^q$$ in a bounded domain Ω ⊂ ℝN, where p > 1, the parameters k, s, l, q, λ > 0 and µ ≥ 0. Firstly, we establish local existence for weak solutions; the aim of this part is to prove a crucial priori estimate on |∇u|. Then, we give appropriate conditions in order to have existence and uniqueness or nonexistence of a global solution in time. Finally, depending on the choices of the initial data, ranges of the coefficients and exponents and measure of the domain, we show that the non-negative global weak solution, when it exists, must extinct after a finite time.

Eringen's nonlocal theory for non-linear bending analysis of BGF Timoshenko nanobeams

  • Azandariani, Mojtaba Gorji;Gholami, Mohammad;Nikzad, Akbar
    • Advances in nano research
    • /
    • 제12권1호
    • /
    • pp.37-47
    • /
    • 2022
  • In this paper, the non-linear static analysis of Timoshenko nanobeams consisting of bi-directional functionally graded material (BFGM) with immovable ends is investigated. The scratching in the FG nanobeam mid-plane, is the source of nonlinearity of the bending problems. The nonlocal theory is used to investigate the non-linear static deflection of nanobeam. In order to simplify the formulation, the problem formulas is derived according to the physical middle surface. The Hamilton principle is employed to determine governing partial differential equations as well as boundary conditions. Moreover, the differential quadrature method (DQM) and direct iterative method are applied to solve governing equations. Present results for non-linear static deflection were compared with previously published results in order to validate the present formulation. The impacts of the nonlocal factors, beam length and material property gradient on the non-linear static deflection of BFG nanobeams are investigated. It is observed that these parameters are vital in the value of the non-linear static deflection of the BFG nanobeam.

EXTINCTION AND NON-EXTINCTION OF SOLUTIONS TO A FAST DIFFUSIVE p-LAPLACE EQUATION WITH A NONLOCAL SOURCE

  • Han, Yuzhu;Gao, Wenjie;Li, Haixia
    • 대한수학회보
    • /
    • 제51권1호
    • /
    • pp.55-66
    • /
    • 2014
  • In this paper, the authors establish the conditions for the extinction of solutions, in finite time, of the fast diffusive p-Laplace equation $u_t=div({\mid}{\nabla}u{\mid}^{p-2}{\nabla}u)+a{\int}_{\Omega}u^q(y,t)dy$, 1 < p < 2, in a bounded domain ${\Omega}{\subset}R^N$ with $N{\geq}1$. More precisely, it is shown that if q > p-1, any solution vanishes in finite time when the initial datum or the coefficient a or the Lebesgue measure of the domain is small, and if 0 < q < p-1, there exists a solution which is positive in ${\Omega}$ for all t > 0. For the critical case q = p-1, whether the solutions vanish in finite time or not depends crucially on the value of $a{\mu}$, where ${\mu}{\int}_{\Omega}{\phi}^{p-1}(x)dx$ and ${\phi}$ is the unique positive solution of the elliptic problem -div(${\mid}{\nabla}{\phi}{\mid}^{p-2}{\nabla}{\phi}$) = 1, $x{\in}{\Omega}$; ${\phi}(x)$=0, $x{\in}{\partial}{\Omega}$. This is a main difference between equations with local and nonlocal sources.

BLOW-UP FOR A NON-NEWTON POLYTROPIC FILTRATION SYSTEM WITH NONLINEAR NONLOCAL SOURCE

  • Zhou, Jun;Mu, Chunlai
    • 대한수학회논문집
    • /
    • 제23권4호
    • /
    • pp.529-540
    • /
    • 2008
  • This paper deals the global existence and blow-up properties of the following non-Newton polytropic filtration system, $${u_t}-{\triangle}_{m,p}u=u^{{\alpha}_1}\;{\int}_{\Omega}\;{\upsilon}^{{\beta}_1}\;(x,\;t)dx,\;{\upsilon}_t-{\triangle}_{n,p}{\upsilon}={\upsilon}^{{\alpha}_2}\;{\int}_{\Omega}\;u^{{\beta}_2}\;(x,{\;}t)dx,$$ with homogeneous Dirichlet boundary condition. Under appropriate hypotheses, we prove that the solution either exists globally or blows up in finite time depends on the initial data and the relations of the parameters in the system.

Calculation of the Reactor Impedance of a Planar-type Inductively Coupled Plasma Source

  • Kwon, Deuk-Chul;Jung, Bong-Sam;Yoon, Nam-Sik
    • Journal of Electrical Engineering and Technology
    • /
    • 제7권1호
    • /
    • pp.86-90
    • /
    • 2012
  • A two-dimensional nonlocal heating theory of planar-type inductively coupled plasma source has been previously reported with a filamentary antenna current model. However, such model yields an infinite value of electric field at the antenna position, resulting in the infinite self-inductance of the antenna. To overcome this problem, a surface current model of antenna should be adopted in the calculation of the electromagnetic fields. In the present study, the reactor impedance is calculated based on the surface current model and the dependence on various discharge parameters is studied. In addition, a simpler method is suggested and compared with the surface current calculation.