References
- J. R. Anderson and K. Deng, Global existence for degenerate parabolic equations with a non-local forcing, Math. Anal. Methods Appl. Sci. 20 (1997), 1069-1087 https://doi.org/10.1002/(SICI)1099-1476(19970910)20:13<1069::AID-MMA867>3.0.CO;2-Y
- M. F. Bidanut-Veon and M. Garcıa-Huidobro, Regular and singular solutions of a quasilinear equation with weights, Asymptotic Anal. 28 (2001), 115-150
- K. Deng and H. A. Levine, The role of critical exponents in blow-up theorems: The sequel, J. Math. Anal. Appl. 243 (2000), 85-126 https://doi.org/10.1006/jmaa.1999.6663
- E. Dibenedetto, Degenerate Parabolic Equations, Springer-Verlag, Berlin, New York, 1993
- J. I. Diaz, Nonlinear Partial Differential Equations and Free Boundaries, in Elliptic Equations, Vol 1, Pitman, London, 1985
- W. B. Deng, Global existence and finite time blow up for a degenerate reaction-diffusion system, Nonlinear Anal. 60 (2005), 977-991 https://doi.org/10.1016/j.na.2004.10.016
- W. B. Deng, Y. X. Li, and C. H. Xie, Blow-up and global existence for a nonlocal degenerate parabolic system, J. Math. Anal. Appl. 277 (2003), 199-217 https://doi.org/10.1016/S0022-247X(02)00533-4
- L. L. Du, Blow-up for a degenerate reaction-diffusion system with nonlinear nonlocal sources, J. Comput. Appl. Math. 202 (2007), 237-247 https://doi.org/10.1016/j.cam.2006.02.028
- Z. W. Duan, W. B. Deng, and C. H. Xie, Uniform blow-up profile for a degenerate parabolic system with nonlocal source, Comput. Math. Appl. 47 (2004), 977-995 https://doi.org/10.1016/S0898-1221(04)90081-8
- V. A. Galaktionov, S. P. Kurdyumov, and A. A. Samarskii, A parabolic system of quasilinear equations I, Differential Equations 19 (1983), 1558-1571
- V. A. Galaktionov, A parabolic system of quasi-linear equations II, Differential Equations 21 (1985), 1049-1062
- V. A. Galaktionov and H. A. Levine, On critical Fujita exponents for heat equations with nonlinear flux conditions on the boundary, Israel J. Math. 94 (1996), 125-146 https://doi.org/10.1007/BF02762700
- V. A. Galaktionov and J. L. V'azquez, The problem of blow-up in nonlinear parabolic equations, Dist. Cont. Dyn. Systems 8 (2002), 399-433 https://doi.org/10.3934/dcds.2002.8.399
- H. Ishii, Asymptotic stability and blowing up of solutions of some nonlinear equations, J. Differential Equations 26 (1997), 291-319 https://doi.org/10.1016/0022-0396(77)90196-6
- A. S. Kalashnikov, Some Problems of the qualitative theory of nonlinear degenerate parabolic equations of second order, Russian Math. Surveys 42 (1987), 169-222 https://doi.org/10.1070/RM1987v042n02ABEH001309
- H. A. Levine, The role of critical exponents in blow up theorems, SIAM Rev. 32 (1990), 262-288 https://doi.org/10.1137/1032046
- H. A. Levine and L. E. Payne, Nonexistence theorems for the heat equation with nonlinear boundary conditions for the porous medium equation backward in time, J. Differential Equations 16 (1974), 319-334 https://doi.org/10.1016/0022-0396(74)90018-7
- F. C. Li and C. H. Xie, Global and blow-up solutions to a p-Laplacian equation with nonlocal source, Comput. Math. Appl. 46 (2003), 1525-1533 https://doi.org/10.1016/S0898-1221(03)90188-X
- F. C. Li, Global existence and blow-up for a nonlinear porous medium equation, Appl. Math. Lett. 16 (2003), 185-192 https://doi.org/10.1016/S0893-9659(03)80030-7
- Y. X. Li and C. H. Xie, Blow-up for p-Laplacian parabolic equations, J. Differential Equations 20 (2003), 1-12 https://doi.org/10.1016/0022-0396(76)90091-7
-
P. Lindqvist, On the equation
${\nabla}{\cdot}$ $({\left|}{\nabla}{u}{\right|}^{p-2}\nabla{u})$ = 0, Pro. Amer. Math. Soc. 109 (1990), 157-164 https://doi.org/10.2307/2048375 -
P. Lindqvist, On the equation
${\nabla}{\cdot}$ $({\left|}{\nabla}{u}{\right|}^{p-2}\nabla{u})$ = 0, Pro. Amer. Math. Soc. 116 (1992), 583-584 https://doi.org/10.2307/2159772 - A. de Pablo, F. Quiros, and J. D. Rossi, Asymptotic simplification for a reactiondiffusion problem with a nonlinear boundary condition, IMA J. Appl. Math. 67 (2002), 69-98 https://doi.org/10.1093/imamat/67.1.69
- F. Quiros and J. D. Rossi, Blow-up sets and Fujita type curves for a degenerate parabolic system with nonlinear boundary conditions, Indiana Univ. Math. J. 50 (2001), 629-654 https://doi.org/10.1512/iumj.2001.50.1828
- A. A. Samarskii, V. A. Galaktionov, S. P. Kurdyumov, and A. P. Mikhailov, Blow-up in Quasilinear Parabolic Equations, Walter de Gruyter, Berlin, 1985
- W. J. Sun and S. Wang, Nonlinear degenerate parabolic equation with nonlinear boundary condition, Acta Mathematica Sinica, English Series 21 (2005), 847-854 https://doi.org/10.1007/s10114-004-0512-2
- M. Tsutsumi, Existence and nonexistence of global solutions for nonlinear parabolic equations, Publ. Res. Inst. Math. Sci. 8 (1972), 221-229 https://doi.org/10.2977/prims/1195193108
- J. L. Vazquez, The porous Medium Equations: Mathematical Theory, Oxford Univ. Press to appear
- S. Wang, Doubly Nonlinear Degenerate parabolic Systems with coupled nonlinear boundary conditions, J. Differential Equations 182 (2002), 431-469 https://doi.org/10.1006/jdeq.2001.4101
- Z. Q. Wu, J. N. Zhao, J. X. Yin, and H. L. Li, Nonlinear Diffusion Equations, Word Scientific Publishing Co., Inc., River Edge, NJ, 2001
-
J. Zhao, Existence and nonexistence of solutions for ut −
${\nabla}{\cdot}$ $({\left|}{\nabla}{u}{\right|}^{p-2}\nabla{u})$ = f(${\nabla}$ u, u, x, t), J. Math. Anal. Appl. 173 (1993), 130-146 https://doi.org/10.1006/jmaa.1993.1012 - S. N. Zheng, X. F. Song, and Z. X. Jiang, Critical Fujita exponents for degenerate parabolic equations coupled via nonlinear boundary flux, J. Math. Anal. Appl. 298 (2004), 308-324 https://doi.org/10.1016/j.jmaa.2004.05.017
- J. Zhou and C. L. Mu, On critical Fujita exponent for degenerate parabolic system coupled via nonlinear boundary flux, Proc. Edinb. Math. Soc. (in press) https://doi.org/10.1017/S0013091505001537
- J. Zhou, The critical curve for a non-Newtonian polytropic filtration system coupled via nonlinear boundary flux, Nonlinear Anal. 68 (2008), 1-11 https://doi.org/10.1016/j.na.2006.10.022
- J. Zhou, Global existence and blow-up for non-Newton polytropic filtration system coupled with local source, Glasgow Math. J. (in press) https://doi.org/10.1017/S0017089508004515
- J. Zhou, Global existence and blow-up for non-Newton polytropic filtration system with nonlocal source, ANZIAM J. (in press) https://doi.org/10.1017/S1446181108000242
Cited by
- Blow-up for an evolution p-laplace system with nonlocal sources and inner absorptions vol.2011, pp.1, 2011, https://doi.org/10.1186/1687-2770-2011-29
- LOCAL AND GLOBAL EXISTENCE AND BLOW-UP OF SOLUTIONS TO A POLYTROPIC FILTRATION SYSTEM WITH NONLINEAR MEMORY AND NONLINEAR BOUNDARY CONDITIONS vol.50, pp.1, 2013, https://doi.org/10.4134/BKMS.2013.50.1.037