• Title/Summary/Keyword: nonlinearity parameter

Search Result 238, Processing Time 0.023 seconds

Elasto-plastic Loading-unloading Nonlinear Analysis of Frames by Local Parameter Control (국부변수 조절을 통한 프레임의 탄소성 하중-제하 비선헝 해석)

  • 박문식
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.14 no.4
    • /
    • pp.435-444
    • /
    • 2001
  • Even todays, accurate and efficient algorithms for the large deformation analysis of elastoplastic frame structures lack due to the complexities of kinematics, material nonlinearities and numerical methods to cater for. The author suggests appropriate beam element based upon the incremental formulation from the 3D rod theory where Cauchy stress and engineering strain are variables to incorporate plasticity equations so that objectivity may be satisfied. A rectum mapping methods which can integrate and satisfy yield criteria efficiently is suggested and a continuation method which has global convergency and quadratic speed is developed as well. leading-unloading example problems are tested and the ideas are proved to be valuable.

  • PDF

A Study on the Position Control of the parallelogram link DD Robot Using Neural Network (신경회로망을 이용한 평행링크 DD로봇의 위치제어)

  • 김성대
    • Journal of the Korean Institute of Telematics and Electronics T
    • /
    • v.36T no.3
    • /
    • pp.64-71
    • /
    • 1999
  • In this paper, two degree of freedom parallelogram link mechanism is used as DD(Direct-drive) robot mechanism. In parallelogram link mechanism, two motors being established in each base frame, the mass of motor itself is not loaded to anther motor; the number of links are increased, the mass of arm being lighter; with the estabilishment of link parameter, nonlinearity such as the centrifugal force disappears; at the same time anti-interference between motors can be realized. And to realize highy-accurate drive of parallelogram link DD robot manipulator, to improve the learning speed through the design of leaning control system using neural network, to raise adapting power to the varied work objects; the learning control algorithm is composed of neural network and feedback controller in this paper.

  • PDF

Stochastic dynamic instability response of piezoelectric functionally graded beams supported by elastic foundation

  • Shegokara, Niranjan L.;Lal, Achchhe
    • Advances in aircraft and spacecraft science
    • /
    • v.3 no.4
    • /
    • pp.471-502
    • /
    • 2016
  • This paper presents the dynamic instability analysis of un-damped elastically supported piezoelectric functionally graded (FG) beams subjected to in-plane static and dynamic periodic thermomechanical loadings with uncertain system properties. The elastic foundation model is assumed as one parameter Pasternak foundation with Winkler cubic nonlinearity. The piezoelectric FG beam is subjected to non-uniform temperature distribution with temperature dependent material properties. The Young's modulus and Poison's ratio of ceramic, metal and piezoelectric, density of respective ceramic and metal, volume fraction exponent and foundation parameters are taken as uncertain system properties. The basic nonlinear formulation of the beam is based on higher order shear deformation theory (HSDT) with von-Karman strain kinematics. The governing deterministic static and dynamic random instability equation and regions is solved by Bolotin's approach with Newmark's time integration method combined with first order perturbation technique (FOPT). Typical numerical results in terms of the mean and standard deviation of dynamic instability analysis are presented to examine the effect of slenderness ratios, volume fraction exponents, foundation parameters, amplitude ratios, temperature increments and position of piezoelectric layers by changing the random system properties. The correctness of the present stochastic model is examined by comparing the results with direct Monte Caro simulation (MCS).

Dynamic Buckling Characteristics of 3-Free-Nodes Spatial Truss Model Under the Step Load (스텝 하중을 받는 3-자유절점 공간 트러스 모델의 동적 좌굴 특성)

  • Shon, Sudeok;Hwang, Kyung-Ju
    • Journal of Korean Association for Spatial Structures
    • /
    • v.20 no.2
    • /
    • pp.59-68
    • /
    • 2020
  • In this paper, the dynamic snapping of the 3-free-nodes spatial truss model was studied. A governing equation was derived considering geometric nonlinearity, and a model with various conditions was analyzed using the fourth order Runge-Kutta method. The dynamic buckling phenomenon was observed in consideration of sensitive changes to the force mode and the initial condition. In addition, the critical load level was analyzed. According to the results of the study, the level of critical buckling load elevated when the shape parameter was high. Parallelly, the same result was caused by the damping term. The sensitive asymmetrical changes showed complex orbits in the phase space, and the critical load level was also becoming lowly. In addition, as the value of damping constant was high, the level of critical load also increases. In particular, the larger the damping constant, the faster it converges to the equilibrium point, and the occurrence of snapping was suppressed.

Nonlinear Controller Design of Active Magnetic Bearing Systems Based on Polytopic Quasi-LPV Models (Polytopic Quasi-LPV 모델 기반 능동자기베어링의 비선형제어기 설계)

  • Lee, Dong-Hwan;Park, Jin-Bae;Jeong, Hyun-Suk;Joo, Young-Hoon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.4
    • /
    • pp.797-802
    • /
    • 2010
  • In this paper, a systematic procedure to design a nonlinear controller for nonlinear active magnetic bearing (AMB) systems is presented. To do this, we effectively convert the AMB system into a polytopic quasi-linear parameter varying (LPV) system, which is a representation of nonlinear state-space models and is described by the convex combination of a set of precisely known vertices. Unlike the existing quasi-LPV systems, the nonlinear weighting functions, which construct the polytopic quasi-LPV model of the AMB system by connecting the vertices, include not only state variables but also the input ones. This allows us to treat the input nonlinearity effectively. By means of the derived polytopic quasi-LPV model and linear matrix inequality (LMI) conditions, nonlinear controller that stabilizes the AMB system is obtained. The effectiveness of the proposed controller design methodology is finally demonstrated through numerical simulations.

Enhanced-Precision LHSMC of Electrical Circuit Considering Low Discrepancy

  • Park, Eun-Suk;Oh, Deok-Keun;Kim, Ju-Ho
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.15 no.1
    • /
    • pp.101-113
    • /
    • 2015
  • The Monte-Carlo (MC) technique is very efficient solution for statistical problem. Various MC methods can easily be applied to statistical circuit performance analysis. Recently, as the number of process parameters and their impact, has increasingly affected circuit performance, a sufficient sample size is required in order to consider high dimensionality, profound nonlinearity, and stringent accuracy requirements. Also, it is important to identify the performance of circuit as soon as possible. In this paper, Fast MC method is proposed for efficient analysis of circuit performance. The proposed method analyzes performance using enhanced-precision Latin Hypercube Sampling Monte Carlo (LHSMC). To increase the accuracy of the analysis, we calculate the effective dimension for the low discrepancy value on critical parameters. This will guarantee a robust input vector for the critical parameters. Using a 90nm process parameter and OP-AMP, we verified the accuracy and reliability of the proposed method in comparison with the standard MC, LHS and Quasi Monte Carlo (QMC).

The Development of Anti-Windup Scheme for Time Delay Control with Switching Action Using Integral Sliding Surface (적분형 슬라이딩 서피스를 이용한 TDCSA(Time Delay Control With Switching Action)의 와인드업 방지를 위한 기법의 개발)

  • Lee, Seong-Uk;Jang, Pyeong-Hun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.8
    • /
    • pp.1534-1544
    • /
    • 2002
  • The TDCSA(Time Delay Control with Switching Action) method, which consists of Time Delay Control(TDC) and a switching action of sliding mode control(SMC), has been proposed as a promising technique in the robust control area, where the plant has unknown dynamics with parameter variations and substantial disturbances are preset. When TDCSA is applied to the plant with saturation nonlinearity, however, the so-called windup phenomena are observed to arise, causing excessive overshoot and instability. The integral element of TDCSA and the saturation element of a plant cause the windup phenomena. There are two integral effects in TDCSA. One is the integral effect occurred by time delay estimation of TDC. Other is the integral term of an integral sliding surface. In order to solve this problem, we have proposed an anti-windup scheme method for TDCSA. The stability of the overall system has been proved for a class of nonlinear system. Experiment results show that the proposed method overcomes the windup problem of the TDCSA.

Ultrasonic Evaluation of Interfacial Stiffness for Nonlinear Contact Surfaces

  • Kim, Noh-Yu;Kim, Hyun-Dong;Cho, Youn-Ho
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.28 no.6
    • /
    • pp.504-511
    • /
    • 2008
  • This paper proposes an ultrasonic measurement method for measurement of linear interfacial stiffness of contacting surface between two steel plates subjected to nominal compression pressures. Interfacial stiffness was evaluated by using shear waves reflected at contact interface of two identical solid plates. Three consecutive reflection waves from solid-solid surface are captured by pulse-echo method to evaluate the state of contact interface. A non-dimensional parameter defined as the ratio of their peak-to-peak amplitudes are formulated and used to calculate the quantitative stiffness of interface. Mathematical model for 1-D wave propagation across interfaces is developed to formulate the reflection and transmission waves across the interface and to determine the interfacial stiffness. Two identical plates are fabricated and assembled to form contacting surface and to measure interfacial stiffness at different states of contact pressure by means of bolt fastening. It is found from experiment that the amplitude of interfacial stiffness is dependent on the pressure and successfully determined by employing pulse-echo ultrasonic method without measuring through-transmission waves.

Nonlinear Scattering of Difference Frequency Acoustic Wave in Water-Saturated Sandy Sediment (수중 모래퇴적물에서 차주파수 음파의 비선형 산란)

  • Kim Byoung-Nam;Lee Kang Il;Yoon Suk Wang;Choi Bok Kyoung
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • spring
    • /
    • pp.347-348
    • /
    • 2004
  • Nonlinear scattering of difference frequency acoustic wave in a water-saturated sandy sediment was investigated. Difference frequency acoustic wave was observed to be scattered due to the nonlinearity of water-saturated sandy sediment when the collinear acoustic waves with two different fundamental frequencies are incident on the sediment. The pressure level of the difference frequency acoustic wave was 6 dB higher than the background noise level. It seems very useful to evaluate the nonlinear parameter of water-saturated sandy sediment without disturbing the sediment. Such nonlinear acoustic response of water-saturated sandy sediment can be used as background acoustic data for estimating the gas void fraction in marine gassy sandy sedimen.

  • PDF

Design of pole-assignment self-tuning controller for steam generator water level in nuclear power plants (원전 증기 발생기 수위 제어를 위한 자기 동조 제어기 설계)

  • Choi, Byung-Jae;No, Hee-Cheon;Kim, Byung-Kook
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.2 no.4
    • /
    • pp.306-311
    • /
    • 1996
  • This paper discusses the maintenance of the water level of steam generators at its programmed value. The process, the water level of a steam generator, has the nonminimum phase property. So, it causes a reverse dynamics called a swell and shrink phenomenon. This phenomenon is severe in a low power condition below 15 %, in turn makes the start-up of the power plant too difficult. The control algorithm used here incorporates a pole-assignment scheme into the minimum variance strategy and we use a parallel adaptation algorithm for the parameter estimation, which is robust to noises. As a result, the total control system can keep the water level constant during full power by locating closed-loop poles appropriately, although the process has the characteristics of high complexity and nonlinearity. Also, the extra perturbation signals are added to the input signal such that the control system guarantee persistently exciting. In order to confirm the control performance of a proposed pole-assignment self-tuning controller we perform a computer simulation in full power range.

  • PDF