• 제목/요약/키워드: nonlinear vibration control

검색결과 272건 처리시간 0.024초

강인제어 기법과 입력성형법을 이용한 자벌레의 정밀 위치 제어 (Precise Position Control of Inchworm Using Robust Control Technique and Input Shaping)

  • 양광용;황윤식;김영식;김인수
    • 한국소음진동공학회논문집
    • /
    • 제19권2호
    • /
    • pp.169-175
    • /
    • 2009
  • This paper presents motion control of the Inchworm composed of the piezoelectric actuators and mechanical elements. Piezoelectric actuator shows nonlinear response characteristics including hysteresis due to the ferroelectric characteristics. This paper proposes feedback control scheme to improve the ability of tracking response to complex input signal and suppress the phenomenon of hysteresis using the sliding mode control technique with the integrator. The sliding mode control system has the limit to minimize both the settle time and overshoot. For making up this limit, this paper also suggests input shaping technique suitable to the inchworm control system.

Active TMD systematic design of fuzzy control and the application in high-rise buildings

  • Chen, Z.Y.;Jiang, Rong;Wang, Ruei-Yuan;Chen, Timothy
    • Earthquakes and Structures
    • /
    • 제21권6호
    • /
    • pp.577-585
    • /
    • 2021
  • In this research, a neural network (NN) method was developed, which combines H-infinity and fuzzy control for the purpose of stabilization and stability analysis of nonlinear systems. The H-infinity criterion is derived from the Lyapunov fuzzy method, and it is defined as a fuzzy combination of quadratic Lyapunov functions. Based on the stability criterion, the nonlinear system is guaranteed to be stable, so it is transformed to be a linear matrix inequality (LMI) problem. Since the demo active vibration control system to the tuning of the algorithm sequence developed a controller in a manner, it could effectively improve the control performance, by reducing the wind's excitation configuration in response to increase in the cost efficiency, and the control actuator.

A Continuous Robust Control Strategy for the Active Aeroelastic Vibration Suppression of Supersonic Lifting Surfaces

  • Zhang, K.;Wang, Z.;Behal, A.;Marzocca, P.
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제13권2호
    • /
    • pp.210-220
    • /
    • 2012
  • The model-free control of aeroelastic vibrations of a non-linear 2-D wing-flap system operating in supersonic flight speed regimes is discussed in this paper. A novel continuous robust controller design yields asymptotically stable vibration suppression in both the pitching and plunging degrees of freedom using the flap deflection as a control input. The controller also ensures that all system states remain bounded at all times during closed-loop operation. A Lyapunov method is used to obtain the global asymptotic stability result. The unsteady aerodynamic load is considered by resourcing to the non-linear Piston Theory Aerodynamics (PTA) modified to account for the effect of the flap deflection. Simulation results demonstrate the performance of the robust control strategy in suppressing dynamic aeroelastic instabilities, such as non-linear flutter and limit cycle oscillations.

강인제어와 입력성형 기법을 이용한 이송 자벌레의 운동 해석 (Motion Analysis of Inchworm using Robust control and Input shaping)

  • 양광용;황윤식;김영식;김인수
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2008년도 추계학술대회논문집
    • /
    • pp.195-200
    • /
    • 2008
  • This paper presents motion control of the Inchworm composed of the piezoelectric actuators and mechanical elements. Piezoelectric actuator shows nonlinear response characteristics including hysteresis due to the ferroelectric characteristics. This paper proposes feedback control scheme to improve the ability of tracking response to complex input signal and suppress the phenomenon of hysteresis using the sliding mode control technique with the integrator. The sliding mode control system has the limit to minimize both the settle time and overshoot. For making up this limit, this paper also suggests input shaping technique suitable to the inchworm control system.

  • PDF

자전거 시뮬레이터용 4자유도 운동판의 설계 및 추적 제어 (Design and Tracking Control of 4-DOF Motion Platform for Bicycle Simulator)

  • 성지원;신재철;이종원
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2001년도 추계학술대회논문집 I
    • /
    • pp.235-240
    • /
    • 2001
  • A four degrees of freedom (dof) motion platform for bicycle simulator is developed. The motion platform, capable of the vertical linear and three angular motions, is designed based on analysis of the typical motion characteristics revealed by the existing six dof bicycle simulator. The platform essentially consists of two parts: the three dof parallel manipulator, consisting of a moving platform, a fixed base and three actuators, and the turntable to generate the yaw motion. The nonlinear kinematics and dynamics of the three dof parallel manipulator with multiple closed loop chains are analyzed for tracking control of the motion platform. The tracking performances of the three control schemes are experimentally compared: the computed torque method (CTM), the sliding mode control (SMC) and the PD control. The CTM and SMC, incorporated with the system dynamics model, are found to be equally better in performance than the PD controller, irrespective of the presence of external disturbance.

  • PDF

Inverse Model Control of An ER Damper System

  • Cho Jeong-Mok;Jung Taeg-Eun;Kim Dong-Hyeon;Joh Joong-Seon
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제6권1호
    • /
    • pp.64-69
    • /
    • 2006
  • Due to the inherent nonlinear nature of Electro-rheological (ER) fluid dampers, one of the challenging aspects for utilizing these devices to achieve high system performance is the development of accurate models and control algorithms that can take advantage of their unique characteristics. In this paper, the nonlinear damping force model is made to identify the properties of the ER damper using higher order spectrum. The higher order spectral analysis is used to investigate the nonlinear frequency coupling phenomena with the damping force signal according to the sinusoidal excitation of the damper. Also, this paper presents an inverse model of the ER damper, i.e., the model can predict the required voltage so that the ER damper can produce the desired force for the requirement of vibration control of vehicle suspension systems. The inverse model is constructed by using a multi-layer perceptron neural network. A quarter-car suspension model is considered in this paper for analysis and simulation. Simulation results show that the proposed inverse model of ER damper can obtain control voltage of ER damper for required damping force.

압전적층판의 열-압전-탄성 동적 비선형 작동특성 (Thermopiezoelastic Nonlinear Dynamic Characteristics of Piezolaminated Plates)

  • 오일권
    • 한국소음진동공학회논문집
    • /
    • 제15권7호
    • /
    • pp.836-842
    • /
    • 2005
  • Nonlinear dynamic characteristics of active piezolaminated plates are investigated with respect to the thermopiezoelastic behaviors. For largely deformed structures with small strain, the incremental total Lagrangian formulation is presented based on the virtual work principles. A multi-field layer-wise finite shell element is proposed for assuring high accuracy and non-linearity of displacement, electric and thermal fields. For dynamic consideration of thermopiezoelastic snap-through phenomena, the implicit Newmark's scheme with the Newton-Raphson iteration is implemented for the transient response of various piezolaminated models with symmetric or eccentric active layers. The bifurcate thermal buckling of symmetric structural models is first investigated and the characteristics of piezoelectric active responses are studied for finding snap-through piezoelectric potentials and the load-path tracking map. The thermoelastic stable and unstable postbuckling, thermopiezoelastic snap-through phenomena with several attractors are proved using the nonlinear time responses for various initial conditions and damping loss factors. Present results show that thermopiezoelastic snap-through phenomena can result in the difficulty of buckling and postbuckling control of intelligent structures.

제한 대역폭을 가진 능동 현가 장치에 대한 Look-ahead 예견 제어-궤도 차량에의 응용 (Look-ahead Preview Control with Limited Bandwidth Active Suspension - Application to Tracked Vehicle Systems)

  • 유성필;박영진;박윤식
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2005년도 추계학술대회논문집
    • /
    • pp.209-212
    • /
    • 2005
  • The look-ahead preview control with the use of limited bandwidth active suspensions is presented. Both a linearized racked vehicle model and a complex nonlinear model based on a commercial multibody dynamic program are used to verify the performance of preview control. The performance of the preview control system is evaluated on the ride quality which is estimated from the acceleration of the driver position. Due to the practical advantages associated with the use of limited bandwidth active control in comparison with full bandwidth systems, the results are considered important to the future development of active tracked vehicle suspensions.

  • PDF

Active mass driver control system for suppressing wind-induced vibration of the Canton Tower

  • Xu, Huai-Bing;Zhang, Chun-Wei;Li, Hui;Tan, Ping;Ou, Jin-Ping;Zhou, Fu-Lin
    • Smart Structures and Systems
    • /
    • 제13권2호
    • /
    • pp.281-303
    • /
    • 2014
  • In order to suppress the wind-induced vibrations of the Canton Tower, a pair of active mass driver (AMD) systems has been installed on the top of the main structure. The structural principal directions in which the bending modes of the structure are uncoupled are proposed and verified based on the orthogonal projection approach. For the vibration control design in the principal X direction, the simplified model of the structure is developed based on the finite element model and modified according to the field measurements under wind excitations. The AMD system driven by permanent magnet synchronous linear motors are adopted. The dynamical models of the AMD subsystems are determined according to the open-loop test results by using nonlinear least square fitting method. The continuous variable gain feedback (VGF) control strategy is adopted to make the AMD system adaptive to the variation in the intensity of wind excitations. Finally, the field tests of free vibration control are carried out. The field test results of AMD control show that the damping ratio of the first vibration mode increases up to 11 times of the original value without control.

유연한 수평 다관절형 로봇의 진동제어 (Vibration control of a flexible SCARA type robot)

  • 용대중;임승철
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1996년도 한국자동제어학술회의논문집(국내학술편); 포항공과대학교, 포항; 24-26 Oct. 1996
    • /
    • pp.225-228
    • /
    • 1996
  • This paper concerns a SCARA type robot with the second arm flexible. Its equations of motion are derived by the Lagrangian mechanics. For controller design, the perturbation approach is taken to separate the original equations of motion into linear equations describing small perturbed motions and nonlinear equations describing purely rigid motion of the robot. To effect the desired payload motion, open loop control inputs are first determined based on the inverse dynamics of the latter. Next, in order to reduce the positional error during maneuver, an active vibration suppression is done. To this end, a feedback control is designed for robustness against disturbance on the basis of the linear equations and the LQR theory modified with a prescribed degree of stability. The numerical simulations results show the satisfactory control performance.

  • PDF