• Title/Summary/Keyword: nonlinear test model

Search Result 903, Processing Time 0.323 seconds

Shear Strain Big-Bang of RC Membrane Panel Subjected to Shear (순수전단이 작용하는 RC막판넬의 전단변형률 증폭)

  • Jeong, Je Pyong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.35 no.1
    • /
    • pp.101-110
    • /
    • 2015
  • Recently, nine $1397{\times}1397{\times}178mm$ RC panels were tested under in-plane pure-shear monotonic loading condition using the Panel Element Tester by Hsu (1997, ACI). By combining the equilibrium, compatibility, and the softened stress-strain relationship of concrete in biaxial state, Modern Truss Model (MCFT, RA-STM) are capable of producing the nonlinear analysis of RC membrane panel through the complicated trial-and-error method with double loop. In this paper, an efficient algorithm with one loop is proposed for the refined Mohr compatibility Method based on the strut-tie failure criteria. This algorithm can be speedy calculated to analyze the shear history of RC membrane element using the results of Hsu test. The results indicate that the response of shear deformation energy at Big Bang of shear strain significantly influenced by the principal compressive stress-strain (crushing failure).

An evolutionary fuzzy modelling approach and comparison of different methods for shear strength prediction of high-strength concrete beams without stirrups

  • Mohammadhassani, Mohammad;Nezamabadi-pour, Hossein;Suhatril, Meldi;shariati, Mahdi
    • Smart Structures and Systems
    • /
    • v.14 no.5
    • /
    • pp.785-809
    • /
    • 2014
  • In this paper, an Adaptive nerou-based inference system (ANFIS) is being used for the prediction of shear strength of high strength concrete (HSC) beams without stirrups. The input parameters comprise of tensile reinforcement ratio, concrete compressive strength and shear span to depth ratio. Additionally, 122 experimental datasets were extracted from the literature review on the HSC beams with some comparable cross sectional dimensions and loading conditions. A comparative analysis has been carried out on the predicted shear strength of HSC beams without stirrups via the ANFIS method with those from the CEB-FIP Model Code (1990), AASHTO LRFD 1994 and CSA A23.3 - 94 codes of design. The shear strength prediction with ANFIS is discovered to be superior to CEB-FIP Model Code (1990), AASHTO LRFD 1994 and CSA A23.3 - 94. The predictions obtained from the ANFIS are harmonious with the test results not accounting for the shear span to depth ratio, tensile reinforcement ratio and concrete compressive strength; the data of the average, variance, correlation coefficient and coefficient of variation (CV) of the ratio between the shear strength predicted using the ANFIS method and the real shear strength are 0.995, 0.014, 0.969 and 11.97%, respectively. Taking a look at the CV index, the shear strength prediction shows better in nonlinear iterations such as the ANFIS for shear strength prediction of HSC beams without stirrups.

Drying Shrinkage of Concretes according to Different Volume-Surface Ratios and Aggregate Types (형상비 및 골재의 종류에 따른 콘크리트 시편의 건조수축특성 연구)

  • Yang, Sung-Chul;Ahn, Nam-Shik;Choi, Dong-Uk;Kang, Seoung-Min
    • International Journal of Highway Engineering
    • /
    • v.6 no.4 s.22
    • /
    • pp.109-121
    • /
    • 2004
  • This study was performed to investigate the characteristics of drying shrinkage for concrete slabs as a project for Korean pavement design procedure. According to the volume-surface ratios and aggregate types, the experiments have been executed for 252 days. In order to simulate the volume-surface ratio of a real concrete pavement slab, three-layer epoxy coating and wrapping were used to prevent the evaporation at the part of specimen surfaces. As a result of preliminary test, coating and wrapping method was identified as reliable for three months. According to the volume-surface ratio, the drying shrinkage of the concrete specimen using sandstone was measured 1.32 to 1.8 times higher than that of the limestone specimen. Comparing to the measured drying shrinkage strains and established ACI and CEB-FIP model equations, it turned out that those model equations were underestimated. Finally, considering the age and volume-surface ratios, the prediction equations of the drying shrinkage of concrete specimen were proposed through a multiple nonlinear regression analysis.

  • PDF

Analytical Study on the Structural Behaviors of Stub Columns Fabricated with HSA800 of High Performance Steel Subjected to Eccentric Loads (편심하중을 받는 고성능강(HSA800) 조립 단주의 구조거동에 관한 해석적 연구)

  • Yoo, Jung Han;Kim, Joo Woo;Yang, Jae Guen;Kang, Joo Won;Lee, Dong Woo
    • Journal of Korean Society of Steel Construction
    • /
    • v.26 no.5
    • /
    • pp.453-461
    • /
    • 2014
  • In this study, the stub columns of built-up H-section and square hollow section subjected to eccentrical loads are tested to evaluate the applicability of the structural members with 800MPa high-strength steel (HSA800) on current design specification. Analytical studies of FE model are conducted to validate the test results and then the verified FE models are used for extensive parametric studies for checking up the applicability of current design code. The parameters are width-to-thickness ratios and axial load ratios. From P-M correlations on parameter models, all stub columns with non-compact sections exceed the current design requirements about axial force and flexural strength ratios are sufficiently secured as the axial load ratios are decreased. The built-up hollow sections with slender section model do not satisfy the current design specification about axial force.

A Study on Appropriate S-box of DES in Radio Channel (무선채널에 적합한 DES의 S박스에 관한 연구)

  • Park, Mi-Og;Choi, Yeon-Hee;Jun, Moon-Seog
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.1C
    • /
    • pp.18-24
    • /
    • 2004
  • Nowadays, the development of wireless communications provides a convenience for many people. On the other hand, the openness of wireless communications poses serious security threats and the security of wireless communications is necessary to support the secure communication channel. The common security method on wireless is the stream cipher that generates the pseudorandom number. In this paper, we propose the usage of the nonlinear function S-box and the mechanism according to it in stream cipher as the study to securely protect data transferred on wireless communications. Besides, it goes abreast a study on S-box with the best random characteristic among the used S-boxes on wireless communications. By means of test, we investigate the most appropriate S-box of DES on wireless communications environment and prove the efficiency of the proposed model by comparing and analysis of the randomness of the based stream cipher and the proposed model.

Development of Design System for EPS Cushioning Package of Monitor Using Axiomatic Design (공리적 설계를 이용한 모니터용 EPS 완충 포장 설계 시스템 개발)

  • Yi, Jeong-Wook;Ha, Dae-Yul;Lee, Sang-Woo;Lim, Jae-Moon;Park, Gyung-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.10
    • /
    • pp.1644-1652
    • /
    • 2003
  • The monitor product is packed by cushioning materials because the monitor can be broken during transportation. However, the addition of the cushioning material increased the volume of the product. Therefore, it is required that the usage of cushioning material be minimized. In practice, design engineers have followed the ad hoc design with experiences of predecessors. Automation of the design process is very important for the reduction of engineering cost, and can be achieved by an excellent design process and software development. According to Axiomatic design, a design flow is defined and a software system is developed for automated design. At first, a basic model is defined. A user can modify the model from menus and design is carried out according to the input from the user. Finite element models are automatically generated based on the design. A nonlinear finite element analysis program called LS/DYNA3D is linked for the impact analysis. The process of Design of Experiments using orthogonal array is installed to minimize the maximum acceleration in drop test. Therefore, a new design can be proposed by the system. The program is designed according to the Independence Axiom of Axiomatic design. FRs and DPs of the software system are defined and decomposed by zigzagging process. Independent modules can be generated by analysis of the full design matrix and each module is coded as class in Object Oriented Programming (OOP). Design results are discussed.

Longitudinal Elongation of Slender Reinforced Concrete Beams Subjected to Cyclic Loading (주기하중을 받는 세장한 철근콘크리트 보의 길이방향 인장변형)

  • Eom, Tae-Sung;Park, Hong-Gun
    • Journal of the Korea Concrete Institute
    • /
    • v.20 no.6
    • /
    • pp.785-796
    • /
    • 2008
  • Longitudinal elongation develops in reinforced concrete beams that exhibit flexural yielding during cyclic loading. The longitudinal elongation can decrease the shear strength and deformation capacity of the beams. In the present study, nonlinear truss model analysis was performed to study the elongation mechanism of reinforced concrete beams. The results showed that residual tensile plastic strain of the longitudinal reinforcing bar in the plastic hinge is the primary factor causing the member elongation, and that the shear-force transfer mechanism of diagonal concrete struts has a substantial effect on the magnitude of the elongation. Based on the analysis results, a simplified method for evaluating member elongation was developed. The proposed method was applied to test specimens with various design parameters and loading conditions.

Numerical analysis for Estimation of Overtopping Rate by using Irregular Wave (불규칙파에 의한 월파량산정의 수치해석법)

  • Kim, Do-Sam;Kim, Chang-Hoon;Lee, Min-Ki;Kim, Ji-Min
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.373-376
    • /
    • 2006
  • In general, a method for generating irregular wave by combination of component waves obtained from linear wave theory is widely used. In these method, however, mean water surface elevation is rising from time to time because of nonlinear effect of wave. In this study, for the rising problem of mean water surface elevation and stabilization of calculation from time to time, mass transport velocity for horizontal velocity at wave source position is considered. The rising problem of mean water surface elevation is checked by comparing calculated wave profile from numerical technique proposed in this study with target wave profile at wave source position in numerical wave tank by using CADMAS-SURF code. And, by generating irregular wave, the validity of wave overtopping rate estimated from this numerical analysis is discussed by comparing computed results with measured results in hydraulic model experiments for vertical seawall located on a sloping sea bottom. As a results, the computations are validated against the previously experimental results by hydraulic model test and numerical results of this study and a good agreement is observed. Therefore, numerical technique of this study is a powerful tool for estimating wave overtopping rate over the crest of coastal structure.

  • PDF

An Analysis about the Behavior of the Wiper Blade Including Incompressibility (비압축성을 고려한 와이퍼 블레이드의 거동 해석)

  • Chung, Won-Sun;Song, Hyun-Seok;Park, Tae-Won;Jung, Sung-Pil;Kim, Wook-Hyeon
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.18 no.2
    • /
    • pp.83-90
    • /
    • 2010
  • The windshield wiper consists of 4 parts: a blade, an arm, a linkage and a motor. The wiper blade makes contact with the windshield and is designed to be operated normally at an angle of 30~50 degrees to the front glass. If the contact pressure between the wiper blade and windshield surface is too high, noise and wear of the rubber will result. On the other hand, if the contact pressure is too low, the performance will do badly, since foreign substances such as dust and stains will not be removed well. The pressure and friction of the wiper blade has a great influence on its effectiveness in cleaning the front window. This is due to the contact of the rubber with the window. This paper presents the dynamic analysis method to estimate the performance of the flat type blade of the wiper system. The blade has a nonlinear characteristic since the rubber is an incompressible hyper-elastic and visco-elastic material. Thus, Structural dynamic analysis using a complex contact model for the blade is performed to find the characteristics of the blade. The flexible multi-body dynamic model is verified by the comparison between test and analysis result. Also, the optimization using the central composite design table is performed.

Simplified Dynamic Modeling of Small-Scaled Rotorcraft (축소형 회전익 항공기의 간략화된 동적 모델링)

  • Lee, Hwan;Lee, Sang-Kee
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.8
    • /
    • pp.56-64
    • /
    • 2005
  • It is prerequisite that we have to fomulate the nonlinear mathematical modeling to design the guidance and control system of rotorcraft-based unmanned aerial vehicle using a small-scaled commercial helicopter. The small-scaled helicopters are very different from the full-scale helicopters in dynamic behavior such as high rotation speed and high frequency dynamic characteristics. In this paper, the formulation of the mathematical model of the small-scaled helicopter to minimize the complexity is presented by component and source build-up approach. It is linearized at the trim condition of hovering and forward flight and analyzed the flight modes. The results of this approach have general trends but a little difference. To verify this approach, it is necessary to compare this theoretical model with experimental results by system identification using flight test as a next research topic.