• Title/Summary/Keyword: nonlinear test model

Search Result 903, Processing Time 0.028 seconds

Development of a Computer Model for the Turning Maneuver Analysis of a Heavy Truck (대형 트럭의 선회 주행특성 해석을 위한 컴퓨터 모델의 개발)

  • 문일동;권혁조;오재윤
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.8 no.4
    • /
    • pp.121-129
    • /
    • 2000
  • this paper develops a computational model for the turning maneuver analysis of a cabover type heavy truck. The model having 42 degree-of-freedom is developed using ADAMS. Leaf springs used in the front and rear suspension systems are modeled by dividing it three links and joining them with joints. Force and displacement relationship showing nonlinear hysteric characteristics of the leaf spring is measured and modeled with an exponential function. A velocity and force relationship of a shock absorber is measured and modeled with a spline function. And a stabilizer bar is modeled using ADAMS beam element to consider a twisting and bending effect. To verify the developed model an actual vehicle test is performed in the double lane change course with 50kph and 60kph vehicle velocity. In the actual vehicle test lateral acceleration roll angle and yaw rate are measured, The tendency and peak-to-peak values of the actual vehicle test and simultion results are compared each other.

  • PDF

ERROR PROPAGATION ANALYSIS FOR IN-ORBIT GOCI RADIOMETRIC CALIBRATION

  • Kang, Gm-Sil;Youn, Heong-Sik
    • Proceedings of the KSRS Conference
    • /
    • 2008.10a
    • /
    • pp.92-95
    • /
    • 2008
  • The Geostationary Ocean Color Imager (GOCI) is under development to provide a monitoring of ocean-color around the Korean Peninsula from geostationary platforms. It is planned to be loaded on Communication, Ocean, and Meteorological Satellite (COMS) of Korea. The GOCI has been designed to provide multi-spectral data to detect, monitor, quantify, and predict short term changes of coastal ocean environment for marine science research and application purpose. The target area of GOCI observation covers sea area around the Korean Peninsula. Based on the nonlinear radiometric model, the GOCI calibration method has been derived. The radiometric model of GOCI has been validated through radiometric ground test. From this ground test result, GOCI radiometric model has been changed from second order to third order. In this paper, the radiometric test performed to evaluate the radiometric nonlinearity is described and the GOCI radiometric error propagation is analyzed. The GOCI radiometric calibration is based on onboard calibration devices; solar diffuser, DAMD (Diffuser Aging Monitoring Device). The radiometric model error due to the dark current nonlinearity is considered as a systematic error. Also the offset correction error due to gain/offset instability is considered. The radiometric accuracy depends mainly on the ground characterization accuracies of solar diffuser and DAMD.

  • PDF

Experimental and numerical investigation on flexural response of reinforced rubberized concrete beams using waste tire rubber

  • Memduh Karalar;Hakan Ozturk;Yasin Onuralp Ozkilic
    • Steel and Composite Structures
    • /
    • v.48 no.1
    • /
    • pp.43-57
    • /
    • 2023
  • The impacts of waste tire rubber (WTR) on the bending conduct of reinforced concrete beams (RCBs) are investigated in visualization of experimental tests and 3D finite element model (FEM) using both ANSYS and SAP2000. Several WTR rates are used in total 4 various full scale RCBs to observe the impact of WTR rate on the rupture and bending conduct of RCBs. For this purpose, the volumetric ratios (Vf) of WTR were chosen to change to 0%, 2.5%, 5% and 7.5% in the whole concrete. In relation to experimental test consequences, bending and rupture behaviors of the RCBs are observed. The best performance among the beams was observed in the beams with 2.5% WTR. Furthermore, as stated by test consequences, it is noticed that while WTR rate in the RCBs is improved, max. bending in the RCBs rises. For test consequences, it is clearly recognized as WTR rate in the RCB mixture is improved from 0% to 2.5%, deformation value in the RCB remarkably rises from 3.89 cm to 7.69 cm. This consequence is markedly recognized that WTR rates have a favorable result on deformation values in the RCBs. Furthermore, experimental tests are compared to 3D FEM consequences via using ANSYS software. In the ANSYS, special element types are formed and nonlinear multilinear misses plasticity material model and bilinear misses plasticity material model are chosen for concrete and compression and tension elements. As a consequence, it is noticed that each WTR rates in the RCBs mixture have dissimilar bending and rupture impacts on the RCBs. Then, to observe the impacts of WTR rate on the constructions under near-fault ground motions, a reinforced-concrete building was modelled via using SAP2000 software using 3-D model of the construction to complete nonlinear static analysis. Beam, column, steel haunch elements are modeled as nonlinear frame elements. Consequently, the seismic impacts of WTR rate on the lateral motions of each floor are obviously investigated particularly. Considering reduction in weight of structure and capacity of the members with using waste tire rubber, 2.5% of WTR resulted in the best performance while the construction is subjected to near fault earthquakes. Moreover, it is noticeably recognized that WTR rate has opposing influences on the seismic displacement behavior of the RC constructions.

Nonlinear dynamic properties of dynamic shear modulus ratio and damping ratio of clay in the starting area of Xiong'an New Area

  • Song Dongsong;Liu Hongshuai
    • Earthquakes and Structures
    • /
    • v.26 no.2
    • /
    • pp.97-115
    • /
    • 2024
  • In this paper, a database consisting of the dynamic shear modulus ratio and damping ratio test data of clay obtained from 406 groups of triaxial tests is constructed with the starting area of Xiong'an New Area as the research background. The aim is to study the nonlinear dynamic properties of clay in this area under cyclic loading. The study found that the effective confining pressure and plasticity index have certain influences on the dynamic shear modulus ratio and damping ratio of clay in this area. Through data analysis, it was found that there was a certain correlation between effective confining pressure and plasticity index and dynamic shear modulus ratio and damping ratio, with fitting degree values greater than 0.1263 for both. However, other physical indices such as the void ratio, natural density, water content and specific gravity have only a small effect on the dynamic shear modulus ratio and the damping ratio, with fitting degree values of less than 0.1 for all of them. This indicates that it is important to consider the influence of effective confining pressure and plasticity index when studying the nonlinear dynamic properties of clays in this area. Based on the above, prediction models for the dynamic shear modulus ratio and damping ratio in this area were constructed separately. The results showed that the model that considered the combined effect of effective confining pressure and plasticity index performed best. The predicted dynamic shear modulus ratio and damping ratio closely matched the actual curves, with approximately 88% of the data falling within ±1.3 times the measured dynamic shear modulus ratio and approximately 85.1% of the data falling within ±1.3 times the measured damping ratio. In contrast, the prediction models that considered only a single influence deviated from the actual values, particularly the model that considered only the plasticity index, which predicted the dynamic shear modulus ratio and the damping ratio within a small distribution range close to the average of the test values. When compared with existing prediction models, it was found that the predicted dynamic shear modulus ratio in this paper was slightly higher, which was due to the overall hardness of the clay in this area, leading to a slightly higher determination of the dynamic shear modulus ratio by the prediction model. Finally, for the dynamic shear modulus ratio and damping ratio of the engineering site in the starting area of Xiong'an New Area, we confirm that the prediction formulas established in this paper have high reliability and provide the applicable range of the prediction model.

Nonlinear response of the pile group foundation for lateral loads using pushover analysis

  • Zhang, Yongliang;Chen, Xingchong;Zhang, Xiyin;Ding, Mingbo;Wang, Yi;Liu, Zhengnan
    • Earthquakes and Structures
    • /
    • v.19 no.4
    • /
    • pp.273-286
    • /
    • 2020
  • The pile group foundation is widely used for gravity pier of high-speed railway bridges in China. If a moderate or strong earthquake occurs, the pile-surrounding soil will exhibit obvious nonlinearity and significant pile group effect. In this study, an improved pushover analysis model for the pile group foundation with consideration of pile group effect is presented and validated by the quasi-static test. The improved model uses simplified springs to simulate the soil lateral resistance, side friction and tip resistance. PM (axial load-bending moment) plastic hinge model is introduced to simulate the impact of the axial force changing of pile group on their elastic-plastic characteristics. The pile group effect is considered in stress-stain relations of the lateral soil resistance with a reduction factor. The influence factors on nonlinear characteristics and plastic hinge distribution of the pile group foundation are discussed, including the pier height, longitudinal reinforcement ratio and stirrup ratio of the pile, and soil mechanical parameters. Furthermore, the displacement ductility factor, resistance increase factor and yielding stiffness ratio are provided to evaluate the seismic performance of soil-pile system. A case study for the pile group foundation of a railway simply supported beam bridge with a 32 m-span is conducted by numerical analysis. It is shown that the ultimate lateral force of pile group is not determined by the yielding force of the single one in these piles. Therefore, the pile group effect is essential for the seismic performance evaluation of the railway bridge with pile group foundation.

Study on Optimal Damping Model of Very Large Offshore Semi-submersible Structure (초대형 반잠수식 해양 구조물의 최적 감쇠 모델에 대한 고찰)

  • Lee, Hyebin;Bae, Yoon Hyeok;Kim, Dongeun;Park, Sewan;Kim, Kyong-Hwan;Hong, Keyyong
    • Journal of Ocean Engineering and Technology
    • /
    • v.32 no.1
    • /
    • pp.1-8
    • /
    • 2018
  • In order to analyze the response of the offshore structure numerically, the linear potential theory is generally applied for simplicity, and only the radiation damping is considered among various damping forces. Therefore, the results of a numerical simulation can be different from the motion of the structure in a real environment. To reduce the differences between the simulation results and experimental results, the viscous damping, which affects the motion of the structure, is also taken into account. The appropriate damping model is essential for the numerical simulation in order to obtain precise responses of the offshore structure. In this study, various damping models such as linear or quadratic damping and the nonlinear drag force from numerous slender bodies were used to simulate the free decay motion of the platform, and its characteristics were confirmed. The optimized damping model was found by comparing the simulation results to the experimental results. The hydrodynamic forces and wave exciting forces of the structure were obtained using WAMIT, and the free decay test was simulated using OrcaFlex. A free decay test of the scale model was performed by KRISO.

Calculation of Damping Ratio Using Non-Linear Soil Models and Comparison between Measured and Predicted Data (흙의 비선형 모델을 이용한 감쇠비 산정 및 비교)

  • Lee, Hyoung-Kyu;Bae, Yoon-Shin
    • Journal of the Korean Geosynthetics Society
    • /
    • v.10 no.2
    • /
    • pp.21-28
    • /
    • 2011
  • Several theoretical soil nonlinear models to predict damping ratio, which is one of the typical dynamic properties of soils, it is impractical to predict damping ratio. The resonant column and torsional shear test(RC-TS) is used to represent the dynamic behavior of soils from intermediate to medium shear strains. A limitation of RC-TS is measure precise shear strain in large strains and the modified equivalent radius($R_{eq}$) was obtained using both modified hyperbolic model and Ramberg-Osgood model. Bonneville clays were tested using RC-TS test to obtain rotation and torque. The measured rotation and torque were then compared with calculated rotation and torque using curve-fitting method. Then, the nonlinear soil model parameters were obtained and the equivalent radius was calculated using the model parameters.

Parameter identification of the nonlinear stall motion from flight test data (비행시험을 통한 항공기의 비선형 실속 운동시의 매개변수 추정)

  • 전일환;황명신;이정훈
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.199-202
    • /
    • 1996
  • In this paper, we used the maximum likelihood method for 2-point aerodynamic model to determine the parameters of the ChangGong-91. Since the estimation from the flight test of real aircraft is the most reliable, we performed the flight test of ChangGong-91 to get the parameters such as velocity, height, 3 axis acceleration, 3 axis angular rate, pitch angle, angle of attack, temperature and so on. We recorded the flight test data in S-VHS tapes and stored them to personal computer using A/D(analog to digital) converter. Flight test was done in stall motion, and the acquired data was be processed with parameter identification method.

  • PDF

Modeling and Analysis of Accelerated Degradation Testing Data for a Solid State Drive (SSD) (Solid State Drive(SSD)에 대한 가속열화시험 데이터 모델링 및 분석)

  • Mun, Byeong Min;Choi, Young Jin;Ji, You Min;Lee, Yong Jung;Lee, Keun Woo;Na, Han Joo;Yang, Joong Seob;Bae, Suk Joo
    • Journal of Applied Reliability
    • /
    • v.18 no.1
    • /
    • pp.33-39
    • /
    • 2018
  • Purpose: Accelerated degradation tests can be effective in assessing product reliability when degradation leading to failure can be observed. This article proposes an accelerated degradation test model for highly reliable solid state drives (SSDs). Methods: We suggest a nonlinear mixed-effects (NLME) model to degradation data for SSDs. A Monte Carlo simulation is used to estimate lifetime distribution in accelerated degradation testing data. This simulation is performed by generating random samples from the assumed NLME model. Conclusion: We apply the proposed method to degradation data collected from SSDs. The derived power model is shown to be much better at fitting the degradation data than other existing models. Finally, the Monte Carlo simulation based on the NLME model provides reasonable results in lifetime estimation.

Wind-induced random vibration of saddle membrane structures: Theoretical and experimental study

  • Rongjie Pan;Changjiang Liu;Dong Li;Yuanjun Sun;Weibin Huang;Ziye Chen
    • Wind and Structures
    • /
    • v.36 no.2
    • /
    • pp.133-147
    • /
    • 2023
  • The random vibration of saddle membrane structures under wind load is studied theoretically and experimentally. First, the nonlinear random vibration differential equations of saddle membrane structures under wind loads are established based on von Karman's large deflection theory, thin shell theory and potential flow theory. The probabilistic density function (PDF) and its corresponding statistical parameters of the displacement response of membrane structure are obtained by using the diffusion process theory and the Fokker Planck Kolmogorov equation method (FPK) to solve the equation. Furthermore, a wind tunnel test is carried out to obtain the displacement time history data of the test model under wind load, and the statistical characteristics of the displacement time history of the prototype model are obtained by similarity theory and probability statistics method. Finally, the rationality of the theoretical model is verified by comparing the experimental model with the theoretical model. The results show that the theoretical model agrees with the experimental model, and the random vibration response can be effectively reduced by increasing the initial pretension force and the rise-span ratio within a certain range. The research methods can provide a theoretical reference for the random vibration of the membrane structure, and also be the foundation of structural reliability of membrane structure based on wind-induced response.