• 제목/요약/키워드: nonlinear system control

검색결과 3,009건 처리시간 0.027초

Nonlinear pH Control Using a Three Parameter Model

  • Lee, Jie-Tae;Park, Ho-Cheol
    • Transactions on Control, Automation and Systems Engineering
    • /
    • 제2권2호
    • /
    • pp.130-135
    • /
    • 2000
  • A two parameter model of a single fictitious weak acid with unknown dissociation constant has been successfully applied to design a neutralization system for many multi-component acid streams. But there are some processes for which above two parameter model is not satisfactory due to poor approxmation of the nonlinearity of pH process. Here, for etter control of wide class of multi-component acid streams, a three parameter model of a strong acid and a weak acid with unknown dissociation constant is proposed. The model approximates effectively three types of largest gain variation nonlinearities. Based on this model a nonlinear pH control system is designed. Parameters can eeasily estimated since their combinations appear linearly in the model equations and nonlinear adaptive control system may also be constructed just as with the two parameter model.

  • PDF

블럭펄스 함수를 이용한 비선형 시스템의 최적제어 (Optimal Control of Nonlinear Systems Using Block Pulse Functions)

  • 조영호;안두수
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제49권3호
    • /
    • pp.111-116
    • /
    • 2000
  • In this paper, we presented a new algebraic iterative algorithm for the optimal control of the nonlinear systems. The algorithm is based on tow steps. The first step transforms optimal control problem into a sequence of linear optimal control problem using the quasilinearization method. In the second step, TPB(two point boundary condition problem) is solved by algebraic equations instead of differential equations using BPF(block pulse functions). The proposed algorithm is simple and efficient in computation for the optimal control of nonlinear systems. In computer simulation, the algorithm was verified through the optimal control design of Van del pole system and Volterra Predatory-prey system.

  • PDF

이송기구의 정밀 위치제어 (Precision Position Control of Feed Drives)

  • 송우근;최우천;조동우;이응석
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1994년도 추계학술대회 논문집
    • /
    • pp.266-272
    • /
    • 1994
  • An essential ingredient in precision machining is a positioning system that responds quickly and precisely to very small input signal. In this paper, two different positioning systems were presented fot the precision positioning control. The one is a friction drive system, the other is a ballscrew system. The friction drive system was composed of an air sliding guide and a friction drive. The ballscrew system was made of a ballscrew and a linear guide. Nonlinear behaviors of the given systems tend to make the system inaccurate. The paper looked at the phenomena that has caused the positioning error. These apparently nonlinear phenomena can be attributed mainly to the presence of the nonlinear friction and slip effect plus the dynamic change from the microdynamic to the macrodynamic and form the macrodynamic to the microdynamic. For the control of the positioning system, the control algorithm based on a neural network is suggested. The FEL(Feedback Error Learning) controller can learn the inverse dynamics of a nonlinear system by using the neural network controller, and stabilize the system by a linear controller. In the experiment, PTP control is implemented withen the maximum error of 0.05 .mu.m ~0.1 .mu. m when i .mu.m step reference input is applied and that of maximum 1 .mu. m when 100 .mu.m step reference input is given. Sinusoidal inputs with the amplitude of 1 .mu.m and 100 .mu. m are used for the tracking control of the positioning system. Experimental results of the proposed algorithm are shown to be superior to those of conventional PD controls.

  • PDF

Nonlinear control of a double-effect evaporator by riemannian geometric approach

  • Izawa, Yoshiaki;Hakomori, Kyojiro
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1994년도 Proceedings of the Korea Automatic Control Conference, 9th (KACC) ; Taejeon, Korea; 17-20 Oct. 1994
    • /
    • pp.405-410
    • /
    • 1994
  • The purpose of this paper is to present the details of design procedure of a nonlinear regulator by Riemannian geometric approach and to applied it to the case of a double-effect evaporator. A nonlinear geometric model is proposed on a direct sum space of a state vector and a control vector as well as in the previous parers by the authors. The geometric model is derived by replacing the orthogonal straight coordinate axes of a linear system on the direct sum space with the curvilinear coordinate axes. The integral manifold of the geometric model becomes homeomorphic to that of fictitious linear system. For the geometric model a nonlinear regulator with a performance index is designed renewedly by the procedure of optimization. The construction method of the curvilinear coordinate axes on which the nonlinear system behaves as a linear system is discussed. To apply the above regulator theory to double-effect evaporators especially to the pilot plant at the University of Alberta, a suitable nonlinear model is determined by the plant dynamics. The optimal control law is derived through the calculation of the homeomorphism. As a result it is confirmed that the regulator is effective and superior to that of the conventional control.

  • PDF

신경회로망을 이용한 선형/비선형 시스템의 식별과 적응 트래킹 제어 (Linear/nonlinear system identification and adaptive tracking control using neural networks)

  • 조규상;임제택
    • 전자공학회논문지B
    • /
    • 제33B권5호
    • /
    • pp.1-9
    • /
    • 1996
  • In this paper, a parameter identification method for a discrete-time linear system using multi-layer neural network is proposed. The parameters are identified with the combination of weights and the output of neuraons of a neural network, which can be used for a linear and a nonlinear controller. An adaptive output tracking architecture is designed for the linear controller. And, the nonlinear controller. A sliding mode control law is applied to the stabilizing the nonlinear controller such that output errors can be reduced. The effectiveness of the proposed control scheme is illustrated through simulations.

  • PDF

비선형 전기유도 시스템용제어기 특성 (Design of a Controller for Nonlinear Electrohydraulic Position Control Systems)

  • 서원모;진강규;하주식
    • 대한전기학회논문지
    • /
    • 제41권1호
    • /
    • pp.63-72
    • /
    • 1992
  • A tracking controller which can improve the performance of nonlinear electrohydraulic position control system is designed and implemented. The method is based on augmenting the system with integrators, obtaining the feedback control law which stabilizes the linear part of the original nonlinear system, and then reajusting the feedback gains using the deseribing funtion method to eliminate the limit cycle in the steady state. The proposed control law is implemented using OP amplifiers, and step and ramp response tests are carried out in the electrohydraulic servomechanism. The results show the improvement in both rransient and steady-state response.

  • PDF

비선형 슬라이딩 면을 이용한 온수난방 순환펌프 시스템의 온도 제어 (Temperature control for a hot water heating circulating pump system using a nonlinear sliding surface)

  • 안병천;장효환
    • 제어로봇시스템학회논문지
    • /
    • 제3권2호
    • /
    • pp.162-168
    • /
    • 1997
  • Digital variable structure controller(DVSC) is implemented to control the temperature for the hot water heating circulating pump control system. For the DVSC, a control algorithm is suggested, which using a nonlinear sliding surface and a PID sliding surface outside and inside of steady state error boundary layer, respectively. Smith predictor algorithm is used for the compensation of long dead time. The DVSC of the suggested algorithm yields improved control performance compared with the one of existing algorithm. The system responses with the suggested DVSC shows good responses without overshoot and steady state error inspite of heating load change. By decreasing sampling time, dead time and rise time are increasing, and system output noise by flow dynamics is amplified.

  • PDF

Adaptive Control of a Single Rod Hydraulic Cylinder - Load System under Unknown Nonlinear Friction

  • Lee Myeong-Ho;Park Hyung-Bae
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제29권3호
    • /
    • pp.251-259
    • /
    • 2005
  • A discrete time model reference adaptive control has been applied in order to compensate the nonlinear friction characteristics in a hydraulic proportional position control system. As nonlinear friction, static and coulomb friction forces are considered and modeled as dead zone and external disturbance respectively. The model reference adaptive control system consists of a cascade combination of the dead zone. external disturbance and linear dynamic block. For adaptive control experiment. the DSP(Digital Signal Processor) board has been interfaced the hydraulic proportional position control system. The experimental results show that the MRAC(Model Reference Adaptive Control) for compensation of static and coulomb friction are very effective.

비선형 제어 시스템의 선형화 (Linearization of the Nonlinear Control Systems)

  • 이홍기
    • 제어로봇시스템학회논문지
    • /
    • 제9권9호
    • /
    • pp.651-657
    • /
    • 2003
  • Linearization is one of the most successful approaches nonlinear system control. The objective of this paper is to survey the recent results in linearization theory. It is hoped to be useful in understanding various linearization problems and challenging unsolved problems.

광 디스크 드라이브 이송계의 모델링 및 비선형 특성 분석 (Modeling of Feeding System for Optical Disk Drive and Nonlinear Dynamic Analysis of it)

  • 이광현;최진영;박태욱;양현석;박영필
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2004년도 추계학술대회논문집
    • /
    • pp.75-78
    • /
    • 2004
  • In an optical disk drive, a feeding system which is used to move the optical pick-up system to the target position and the proper control scheme of it are important in random access performance. Since the effect of control is directly affected by the modeling precision of the real system, the precise modeling to the real system should be acquired. Although a simple linear order modeling to the feeding system of an optical disk drive is useful in understanding of the overall dynamic characteristics, the dynamic characteristics which are belongs to the nonlinear area cannot be predicted correctly. Furthermore, the feeding system of an optical disk drive has many nonlinear characteristics such as a nonlinear friction and backlash. For this reason, the understanding of the nonlinear properties in the feeding system is very important. In this paper, the nonlinear items of the feeding system, friction and backlash, are introduced and the effect of it are investigated. Finally, the mathematical model considering the nonlinear properties is compared to the real system, and some comments of it are given.

  • PDF