• Title/Summary/Keyword: nonlinear static analysis (pushover)

Search Result 113, Processing Time 0.02 seconds

Assessment of FEMA356 nonlinear static procedure and modal pushover analysis for seismic evaluation of buildings

  • Khoshnoud, Hamid Reza;Marsono, Kadir
    • Structural Engineering and Mechanics
    • /
    • v.41 no.2
    • /
    • pp.243-262
    • /
    • 2012
  • Nonlinear static analysis as an essential part of performance based design is now widely used especially at design offices because of its simplicity and ability to predict seismic demands on inelastic response of buildings. Since the accuracy of nonlinear static procedures (NSP) to predict seismic demands of buildings affects directly on the entire performance based design procedure, therefore lots of research has been performed on the area of evaluation of these procedures. In this paper, one of the popular NSP, FEMA356, is evaluated and compared with modal pushover analysis. The ability of these procedures to simulate seismic demands in a set of reinforced concrete (RC) buildings is explored with two level of base acceleration through a comparison with benchmark results determined from a set of nonlinear time history analyses. According to the results of this study, the modal pushover analysis procedure estimates seismic demands of buildings like inter story drifts and hinges plastic rotations more accurate than FEMA356 procedure.

An evaluation of the seismic response of symmetric steel space buildings

  • Yon, Burak
    • Steel and Composite Structures
    • /
    • v.20 no.2
    • /
    • pp.399-412
    • /
    • 2016
  • This paper evaluates the seismic response of three dimensional steel space buildings using the spread plastic hinge approach. A numerical study was carried out in which a sample steel space building was selected for pushover analysis and incremental nonlinear dynamic time history analysis. For the nonlinear analysis, three earthquake acceleration records were selected to ensure compatibility with the design spectrum defined in the Turkish Earthquake Code. The interstorey drift, capacity curve, maximum responses and dynamic pushover curves of the building were obtained. The analysis results were compared and good correlation was obtained between the idealized dynamic analyses envelopes with and static pushover curves for the selected building. As a result to more accurately account response of steel buildings, dynamic pushover envelopes can be obtained and compared with static pushover curve of the building.

Lateral Load Distribution Factor for Modal Pushover Analysis (고차모드 영향이 반영된 Pushover 해석을 위한 횡하중 분배계수 제안)

  • Kim, Geon-Woo;Song, Jin-Gyu
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2005.03a
    • /
    • pp.236-243
    • /
    • 2005
  • Nonlinear static analysis is used to quantify the resistance of the structure to lateral deformation and to gauge the mode of deformation and intensity of local demands. A simple method for the nonlinear static analysis of complex building structures subjected to monotonically increasing horizontal loading(pushover analysis) is presented. The method is designed to be a part of new methodologies for the seismic design and evaluation of structures. A variety of existing pushover analysis procedures are currently being consolidated under programs such as ATC 40 and FEMA 273. And various techniques have been recommended, including the use of constant lateral force profiles and the use of adaptive and multimodal approaches. In this paper a modal pushover analysis using design response spectra of UBC 97 is proposed. Proposed method is compared against the method in FEMA 273 and ATC 40, and results of time history analysis.

  • PDF

Seismic Analysis of Cable-Stayed Bridges using Nonlinear Static Procedures (비선형 정적 해석법을 이용한 사장교의 지진해석)

  • Shin, Dong Kyu;Kwak, Hyo-Gyoung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.2A
    • /
    • pp.59-69
    • /
    • 2011
  • Nonlinear static procedures (NSPs) basing on the concept of performance based seismic design have become one of the promising procedures for seismic evaluation of buildings. Although it needs much less computational cost compared to nonlinear time history analysis (NTHA), its usages are limited to simple structures by its inherent restriction to structures wherein the fundamental mode dominates the response. Several new nonlinear static procedures (Modal Pushover Analysis; MPA and Improved Modal Pushover Analysis; IMPA) which can consider higher modes effect were introduced. Nonetheless, its applicability for complex structures such as cable-stayed bridge has not studied yet. This paper focuses on applicability of nonlinear static procedures for the seismic analysis of cable-stayed bridges. Moreover, reliability indexes which can predict analysis procedure's accuracy are introduced.

Error Analysis of Nonlinear Direct Spectrum Method to Various Earthquakes (다양한 지진에 따른 비선형 직접스펙트럼법의 오차해석)

  • 강병두;박진화;전대환;김재웅
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2002.04a
    • /
    • pp.53-60
    • /
    • 2002
  • It has been recognized that damage control must become a more explicit design consideration. In an effort to develop design methods based on performance it is clear that the evaluation of the inelastic response is required. The methods available to the design engineer today are nonlinear time history analyses, or monotonic static nonlinear analyses, or equivalent static analyses with simulated inelastic influences. Some codes proposed the capacity spectrum method based on the nonlinear static(pushover) analysis to determine earthquake-induced demand given the structure pushover curve. This procedure is conceptually simple but iterative and time consuming with some errors. This paper presents a nonlinear direct spectrum method to evaluate seismic Performance of structure, without iterative computations, given the structural initial elastic period and yield strength from the pushover analysis, especially for multi degree of freedom structures. The purpose of this paper is to investigate accuracy and confidence of this method from a point of view of various earthquakes and unloading stiffness degradation parameters.

  • PDF

Nonlinear Seismic Analysis of Steel Buildings Considering the Stiffnesses of the Foundation-Soil System (기초지반강성을 고려한 철골 건축구조물의 비선형 지진해석)

  • Oh, Yeong Hui;Kim, Yong Seok
    • Journal of Korean Society of Steel Construction
    • /
    • v.18 no.2
    • /
    • pp.173-180
    • /
    • 2006
  • The seismic responses of a building are affected by the base soil conditions. In this study, linear time-history seismic analysis and nonlinear pushover static seismic analysis were performed to estimate the base shear forces of 3-, 5-, and 7-story steel buildings, considering the rigid and soft soil conditions. Foundation soil stiffness, based on the equivalent static stiffness formula, is used for the damper, one of the Link elements in SAP 2000. The base shear forces of the steel buildings, estimated through time-history analysis using the general-purpose structural-analysis program of SAP 2000, were compared with those calculated using the domestic seismic design code, the UBC-97 design response spectrum. and pushover static nonlinear analysis. The steel buildings designed for gravity and wind loads showed elastic responses with a moderate earthquake of 0.11 g, while the elastic soft-soil layer increased the displacement and the base shear force of the buildings due to soil-structure interaction and soil amplification. Therefore, considering the characteristics of the soft-soil layer, it is more reasonable to perform an elastic seismic analysis of a building's structure during weak or moderate earthquakes.

Assessment of nonlinear static and incremental dynamic analyses for RC structures

  • Oncu, Mehmet Emin;Yon, Merve Sahin
    • Computers and Concrete
    • /
    • v.18 no.6
    • /
    • pp.1195-1211
    • /
    • 2016
  • In this study, seismic behaviour of reinforced concrete buildings using the pushover and incremental dynamic analysis method was investigated. A numerical study was performed for a reinforced concrete frame building. Pushover analysis according to uniform and triangular load shapes and incremental dynamic analyses were performed for selected building. For the nonlinear analysis, three ground motion records were selected to ensure compatibility with the design spectrum defined in the Turkish Seismic Code. The maximum response, dynamic pushover curve, capacity curves, interstorey drifts and moment rotation curves for various element ends of the selected building were obtained. Results were compared each other and good correlation was obtained between the dynamic analyses envelope with static pushover curves for the building.

Modified Nonlinear Static Pushover Procedures of MDOF Bridgesfor Seismic Performance Evaluation (내진성능평가를 위한 다자유도 교량의 수정 비선형 등가정적해석법)

  • Cho, Chang-Geun;Kim, Young-Sang;Bae, Soo-Ho
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.10 no.4
    • /
    • pp.175-184
    • /
    • 2006
  • Two methods of the nonlinear static pushover analysis have been presented for the performance-based seismic design and evaluation of MDOF continuous bridges. Guidelines for buildings presented in FEMA-273 applying the Displacement Coefficient Method (DCM) and in ATC applying the Capacity Spectrum Method(CSM) have been modified for MDOF bridges. Two methods are compared with the time- history analysis. The lateral load distribution pattern for seismic loads has been examined in the static pushover analysis. The force-based fiber frame finite element has been implemented in the modeling of reinforced concrete piers.

The Response Characteristics of Approximate Nonlinear Methods with RC Dual System (이중골조에 대한 비선형 약산법들의 응답특성)

  • Nam Young-Woo;Kang Pyeong-Doo;Jun Dae-Han;Kim Jae-Ung
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2005.04a
    • /
    • pp.71-78
    • /
    • 2005
  • In performance-based design methods, it is clear that the evaluation of the nonlinear response is required. The methods available to the design engineer today are nonlinear tim history analyses, or monotonic static nonlinear analyses, or equivalent static analyses with simulated inelastic influences. The nonlinear time analysis is the most accurate method in computing the nonlinear response of structures, but it is time-consuming and necessitate more efforts. Some codes proposed the capacity spectrum method based on the nonlinear static analysis to determine earthquake-induced demand given the structure pushover curve. This procedure is conceptually simple but iterative and time consuming with some errors. The nonlinear direct spectrum method is proposed and studied to evaluate nonlinear response of structures, without iterative computations, given by the structural linear vibration period and yield strength from the pushover analysis. The purpose of this paper is to compare the accuracy and the reliability of approximate nonlinear methods with respect to RC dual system and various earthquakes.

  • PDF

Seismic response estimation of steel plate shear walls using nonlinear static methods

  • Dhar, Moon Moon;Bhowmick, Anjan K.
    • Steel and Composite Structures
    • /
    • v.20 no.4
    • /
    • pp.777-799
    • /
    • 2016
  • One of the major components for performance based seismic design is accurate estimation of critical seismic demand parameters. While nonlinear seismic analysis is the most appropriate analysis method for estimation of seismic demand parameters, this method is very time consuming and complex. Single mode pushover analysis method, N2 method and multi-mode pushover analysis method, modal pushover analysis (MPA) are two nonlinear static methods that have recently been used for seismic performance evaluation of few lateral load-resisting systems. This paper further investigates the applicability of N2 and MPA methods for estimating the seismic demands of ductile unstiffened steel plate shear walls (SPSWs). Three different unstiffened SPSWs (4-, 8-, and 15-storey) designed according to capacity design approach were analysed under artificial and real ground motions for Vancouver. A comparison of seismic response quantities such as, height-wise distribution of floor displacements, storey drifts estimated using N2 and MPA methods with more accurate nonlinear seismic analysis indicates that both N2 and MPA procedures can reasonably estimates the peak top displacements for low-rise SPSW buildings. In addition, MPA procedure provides better predictions of inter-storey drifts for taller SPSW. The MPA procedure has been extended to provide better estimate of base shear of SPSW.