• Title/Summary/Keyword: nonlinear site

Search Result 215, Processing Time 0.032 seconds

A Study on the Evaluation of Soil Nonlinear Characteristics by Seismic Recorded Data at Downhole Array (Downhole 지진계측자료에 의한 지반의 비선형성 평가에 관한 연구)

  • 장정범;서용표;이종림;이계희
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.5 no.6
    • /
    • pp.29-35
    • /
    • 2001
  • The soil-structure interaction(SSI) analysis is essential to soil site where shear wave velocity is less than 1,050 m/sec and soil nonlinear characteristics for this kind of soil site have to be considered in SSI analysis. In order to consider soil nonlinear characteristics in the SSI analysis, simple and reliable soil nonlinear evaluation technique with seismic recorded data at downhole array is proposed in this study. The SSI analysis is carried out in order to prove the reliability of the proposed evaluation technique with Hualien large scale seismic test(HLSST) site in Taiwan. The analytical result are compared with Hualien earthquake recorded data and the analytical results with SHAKE program which is prevailed at present. As a result, the proposed evaluation technique shows a good agreement with both the Hualien earthquake recorded data and the analytical result with SHAKE program and the reliability and usefulness are confirmed.

  • PDF

Seismic Performance Evaluation of Steel Moment Frames in Korea Using Nonlinear Dynamic Analysis (비선형동적해석을 통한 국내 철골 모멘트골조의 내진성능 평가)

  • Kim, Tae-Wan
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.16 no.4
    • /
    • pp.1-8
    • /
    • 2012
  • Domestic steel moment resisting frames were designed in accordance with the former KBC2005 and the current KBC2009, and then their seismic performance was evaluated in accordance with FEMA355F by utilizing nonlinear dynamic analysis. The results from the procedure in FEMA355F were different with those from the capacity spectrum method utilizing nonlinear static push-over analysis. In particular, the domestic steel moment resisting frames have a weak panel zone, so their behavior can be estimated more precisely by nonlinear dynamic analysis. The domestic steel moment resisting frames satisfied the performance goal if located at a site class $S_B$ or $S_C$, regardless of the story number and the response modification factor. However, if they are located at a site class $S_D$ or $S_E$, performance goal satisfaction cannot be guaranteed. No matter what standard is used for the design, KBC2005 or KBC2009, the domestic steel moment resisting frames may possess satisfactory seismic performance if the site condition is relatively good.

Analysis of Harbor Tranquility due to Port Expansion

  • Moon, SeungHyo;Lee, JoongWoo;Kwon, SeongMin;Song, HyunWoo
    • Journal of Navigation and Port Research
    • /
    • v.43 no.5
    • /
    • pp.320-327
    • /
    • 2019
  • This study examined the port expansion plan for the fishery port at the east coast of Korea, in accordance with permission conditions for coastal ports such as a limit on the cargo volume and passenger demand for the coastal tourism belt formation. The site was chosen as a municipal coastal port attracting the new ocean industry and building waterfront zone as a hub of new marine tourism. Two different numerical models (Swan and Bouss 2D) were used. Before applying to the target sea area, some numerical tests were conducted for the variation according to Bouss-2D's strong/weak and nonlinear technique compared to the irregular diffraction of semi-infinite breakwater with a theoretical solution. As a result, there was a difference in strong nonlinearity with breaking waves and it was necessary to experiment with a strong nonlinear analysis technique for the actual site. Two numerical models were applied to the fishery port site and the tranquility of some alternatives were analyzed. The numerical results show the most suitable plan was ALT-1, with satisfied harbor tranquility and reasonable economic sense. The extension of the east breakwater and enlarged turning basin of the F-Land plan have brought generally more stable harbor tranquility than the ALT-1. The result can be used as a reference for the port expansion plan in the future.

Seismic Analysis of Tunnel Response by Response Displacement Method (응답변위법에 의한 터널의 내진해석)

  • Yun, Se-Ung;Shin, Jong-Ho;Park, Du-Hee
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.09a
    • /
    • pp.457-462
    • /
    • 2009
  • In this study, seismic analysis is performed using simplified method, analytical solution and numerical analysis based on one-dimensional seismic site response analysis. The results show that analytical solution of tunnel response is predicted more conservative than numerical solution. And simplified method is not appropriate for seismic analysis of tunnel response. In addition, it is reasonable to determine shear-modulus reduction ratio performing seismic site response analysis to consider ground nonlinear-behavior.

  • PDF

Seismic Response Analyses of the Structure-Soil System for the Evaluation of the Limits of the Site Coefficients (지반계수의 한계값 평가를 위한 구조물-지반체계에 대한 지진응답해석)

  • Kim, Yong-Seok
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.11 no.1 s.53
    • /
    • pp.67-77
    • /
    • 2007
  • Site coefficients in IBC and KBC codes have some limits to predict the rational seismic responses of a structure, because they take into account only the effect of the soil amplification without the effects of the structure-soil interaction. In this study, upper and lower limits of the site coefficients are estimated through the pseudo 3-D elastic seismic response analyses of structures built on the linear or nonlinear soil layers taking Into account the effects of the structure-soil interaction. Soil characteristics of site classes of A, B and C were assumed to be linear, and those of site classes of D and E were done to be nonlinear and the Ramberg-Osgood model was used to evaluate shear modulus and damping ratio of a soil layer depending on the shear wave velocity of the soil layer, Seismic analyses were performed with 12 weak or moderate earthquake records scaled the peak acceleration to 0.1g or 0.2g and deconvoluted as earthquake records at the bedrock located at 30m deep under the outcrop. With the study results of the elastic seismic response analyses of structures, new standard response spectrum and upper and lower limits of the site coefficients of $F_{a}\;and\;F_{v}$ at the short period range and the period of 1 second are suggested including the effects of the structure-soil interaction, and new site coefficients for the KBC code are also suggested.

Nonlinear damage detection using higher statistical moments of structural responses

  • Yu, Ling;Zhu, Jun-Hua
    • Structural Engineering and Mechanics
    • /
    • v.54 no.2
    • /
    • pp.221-237
    • /
    • 2015
  • An integrated method is proposed for structural nonlinear damage detection based on time series analysis and the higher statistical moments of structural responses in this study. It combines the time series analysis, the higher statistical moments of AR model residual errors and the fuzzy c-means (FCM) clustering techniques. A few comprehensive damage indexes are developed in the arithmetic and geometric mean of the higher statistical moments, and are classified by using the FCM clustering method to achieve nonlinear damage detection. A series of the measured response data, downloaded from the web site of the Los Alamos National Laboratory (LANL) USA, from a three-storey building structure considering the environmental variety as well as different nonlinear damage cases, are analyzed and used to assess the performance of the new nonlinear damage detection method. The effectiveness and robustness of the new proposed method are finally analyzed and concluded.

Estimation of Nonlinear Site Effects of Soil Profiles in Korea (국내 지반에서의 비선형 부지효과 예측)

  • Lee, Hong-Sung;Yun, Se-Ung;Park, Du-Hee;Kim, In-Tai
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.3
    • /
    • pp.13-23
    • /
    • 2008
  • In a nonlinear site response analysis which is performed in time domain, small strain damping is modeled as viscous damping through use of various forms of Rayleigh damping formulations. Small strain damping of soil is known to be independent of the loading frequency, but the viscous damping is greatly influenced by the loading frequency. The type of Rayleigh damping formulation has a pronounced influence on the dependence. This paper performs a series of nonlinear analyses to evaluate the degree of influence of the viscous damping formulation on Korean soil profiles. Analyses highlight the strong influence of the viscous damping formulation for soil profiles exceeding 30 m in thickness, commonly used in simplified Rayleigh damping formulation overestimating energy dissipation at high frequencies due to artificially introduced damping. When using the full Rayleigh damping formulation and carefully selecting the optimum modes, the artificial damping is greatly reduced. Results are further compared to equivalent linear analyses. The equivalent linear analyses can overestimate the peak ground acceleration even for shallow profiles less than 20 m in thickness.

Linear and nonlinear site response analyses to determine dynamic soil properties of Kirikkale

  • Sonmezer, Yetis Bulent;Bas, Selcuk;Isik, Nihat Sinan;Akbas, Sami Oguzhan
    • Geomechanics and Engineering
    • /
    • v.16 no.4
    • /
    • pp.435-448
    • /
    • 2018
  • In order to make reliable earthquake-resistant design of civil engineering structures, one of the most important considerations in a region with high seismicity is to pay attention to the local soil condition of regions. It is aimed in the current study at specifying dynamic soil characteristics of Kirikkale city center conducting the 1-D equivalent linear and non-linear site response analyses. Due to high vulnerability and seismicity of the city center of Kirikkale surrounded by active many faults, such as the North Anatolian Fault (NAF), the city of Kirikkale is classified as highly earthquake-prone city. The first effort to determine critical site response parameter is to perform the seismic hazard analyses of the region through the earthquake record catalogues. The moment magnitude of the city center is obtained as $M_w=7.0$ according to the recorded probability of exceedance of 10% in the last 50 years. Using the data from site tests, the 1-D equivalent linear (EL) and nonlinear site response analyses (NL) are performed with respect to the shear modulus reduction and damping ratio models proposed in literature. The important engineering parameters of the amplification ratio, predominant site period, peak ground acceleration (PGA) and spectral acceleration values are predicted. Except for the periods between the period of T=0.2-1.0 s, the results from the NL are obtained to be similar to the EL results. Lower spectral acceleration values are estimated in the locations of the city where the higher amplification ratio is attained or vice-versa. Construction of high-rise buildings with modal periods higher than T=1.0 s are obtained to be suitable for the city of Kirikkale. The buildings at the city center are recommended to be assessed with street survey rapid structural evaluation methods so as to mitigate seismic damages. The obtained contour maps in this study are estimated to be effective for visually characterizing the city in terms of the considered parameters.

Seismic response analysis of layered soils considering effect of surcharge mass using HFTD approach. Part II: Nonlinear HFTD and numerical examples

  • Saffarian, Mohammad A.;Bagheripour, Mohammad H.
    • Geomechanics and Engineering
    • /
    • v.6 no.6
    • /
    • pp.531-544
    • /
    • 2014
  • Studies of earthquakes over the last 50 years and the examination of dynamic soil behavior reveal that soil behavior is highly nonlinear and hysteretic even at small strains. Nonlinear behavior of soils during a seismic event has a predominant role in current site response analysis approaches. Common approaches to ground response analysis include linear, equivalent linear and nonlinear methods. These methods of ground response analysis may also be categorized into time domain and frequency domain concepts. Simplicity in developing analytical relations and accuracy in considering soils' dynamic properties dependency to loading frequency are benefits of frequency domain analysis. On the other hand, nonlinear methods are complicated and time consuming mainly because of their step by step integrations in time intervals. In part Ι of this paper, governing equations for seismic response analysis of surcharged and layered soils were developed using fundamental of wave propagation theory based on transfer function and boundary conditions. In this part, nonlinear seismic ground response is analyzed using extended HFTD method. The extended HFTD method benefits Newton-Raphson procedure which applies regular iterations and follows soils' fundamental stress-strain curve until convergence is achieved. The nonlinear HFTD approach developed here are applied to some examples presented in this part of the paper. Case studies are carried in which effects of some influencing parameters on the response are investigated. Results show that the current approach is sufficiently accurate, efficient, and fast converging. Discussions on the results obtained are presented throughout this part of the paper.

Cyclic Hardening and Degradation Effects on Site Response during an Earthquake (지진시 지반의 반복경화/연화 현상에 의한 부지응답 특성 영향 연구)

  • Lee, Jin-Sun
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.12 no.6
    • /
    • pp.65-71
    • /
    • 2008
  • A one-dimensional site response analysis program (KODSAP) was developed using cyclic soil behavior model by using the modified parallel IWAN model. The model is able to predict the cyclic hardening and degradation of soil through the adjustment of the internal slip stresses of its elements beyond the cyclic threshold, and satisfies Bauschinger's effect and the Masing rule in terms of its own behavior characteristics. The program (KODSAP) used the direct integration method in the time domain. The elasticity of the base rock was considered as a viscous damper boundary condition. The effects of cyclic hardening or degradation of soil on site response analysis were evaluated through parametric studies. Three types of analyses were performed to compare the effect of analysis and cyclic parameter on site response. The first type was equivalent linear analysis, the second was nonlinear analysis, and a third was nonlinear analysis using the cyclic hardening or degradation model.