• Title/Summary/Keyword: nonlinear quasi-static analysis

Search Result 59, Processing Time 0.023 seconds

Three-dimensional limit analysis of seismic stability of tunnel faces with quasi-static method

  • Zhang, B.;Wang, X.;Zhang, J.S.;Meng, F.
    • Geomechanics and Engineering
    • /
    • v.13 no.2
    • /
    • pp.301-318
    • /
    • 2017
  • Based on the existing research results, a three-dimensional failure mechanism of tunnel face was constructed. The dynamic seismic effect was taken into account on the basis of quasi-static method, and the nonlinear Mohr-Coulomb failure criterion was introduced into the limit analysis by using the tangent technique. The collapse pressure along with the failure scope of tunnel face was obtained through nonlinear limit analysis. Results show that nonlinear coefficient and initial cohesion have a significant impact on the collapse pressure and failure zone. However, horizontal seismic coefficient and vertical seismic proportional coefficient merely affect the collapse pressure and the location of failure surface. And their influences on the volume and height of failure mechanism are not obvious. By virtue of reliability theory, the influences of horizontal and vertical seismic forces on supporting pressure were discussed. Meanwhile, safety factors and supporting pressures with respect to 3 different safety levels are also obtained, which may provide references to seismic design of tunnels.

Sensitivity Analysis of the Explicit Elasto-plastic Finite Element Method and Application to the Quasi-static Deformation (외연적 탄소성 유한요소해석에서의 민감도 해석과 준정적 변형에의 응용)

  • Kim, Se-Ho;Huh, Hoon
    • Proceedings of the KSME Conference
    • /
    • 2001.06c
    • /
    • pp.402-407
    • /
    • 2001
  • Sensitivity analysis scheme is developed in the elasto-plastic finite element method with explicit time integration using direct differentiation method. The direct differentiation is concerned with the time integration, constitutive relation, shell element with reduced integration and the contact scheme. Sensitivity analysis results are mainly examined with the highly nonlinear and quasi-static problem with the complicated contact condition. The result shows stable sensitivity especially in the sheet metal forming analysis.

  • PDF

Use of copper shape memory alloys in retrofitting historical monuments

  • El-Borgi, S.;Neifar, M.;Jabeur, M. Ben;Cherif, D.;Smaoui, H.
    • Smart Structures and Systems
    • /
    • v.4 no.2
    • /
    • pp.247-259
    • /
    • 2008
  • The potential use of Cu-based shape memory alloys (SMA) in retrofitting historical monuments is investigated in this paper. This study is part of the ongoing work conducted in Tunisia within the framework of the FP6 European Union project (WIND-CHIME) on the use of appropriate modern seismic protective systems in the conservation of Mediterranean historical buildings in earthquake-prone areas. The present investigation consists of a finite element simulation, as a preliminary to an experimental study where a cantilever masonry wall, representing a part of a historical monument, is subjected to monotonic and quasi-static cyclic loadings around a horizontal axis at the base level. The wall was retrofitted with an array of copper SMA wires with different cross-sectional areas. A new model is proposed for heat-treated copper SMAs and is validated based on published experimental results. A series of nonlinear finite element analyses are then performed on the wall for the purpose of assessing the SMA device retrofitting capabilities. Simulation results show an improvement of the wall response for the case of monotonic and quasi-static cyclic loadings.

A Modified BFGS Method with Substructuring for the Nonlinear Structural Analysis (비선형 구조해석에서 부분구조를 이용한 수정 BFGS법)

  • Yeon-Sun,Ryu;Gil-Su,Yoon
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.23 no.3
    • /
    • pp.39-44
    • /
    • 1986
  • The basic BFGS procedure for the nonlinear finite element analysis is reviewed. Through a simple numerical example, promising characteristics of the method evaluated discussed. Based on the discussion of computational performance, a modified BFGS algorithm with substructuring is derived and proposed for the quasi-static analysis of large-scale nonlinear structures.

  • PDF

Performance analysis on the nonlinear distortion in OFCDM downlink system using clipped multilevel-PSK (Clipped multilevel-PSK를 이용한 OFCDM 순방향 링크에서 비선형 왜곡에 대한 성능 분석)

  • 안치훈;최영관;장승훈;김동구
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.40 no.11
    • /
    • pp.17-26
    • /
    • 2003
  • To reduce the nonlinear distortion of high power amplifier(HPA) in down link OFCDM system to employ time domain spreading, we apply technology which transmits MPSK(Multilevel-PSK) signal after clipping on multilevel input signal of IFFT subcarrier. In case that the nonlinear distortion of HPA is considered in AWGN channel, performacne of clipping OFCDM system using extended m sequence is over 2.2㏈ better than that of OFCDM system using extended m sequence when the number of user is 8 and 16. In case that the nonlinear distortion of HPA is considered in quasi-static channel, performacne of clipping OFCDM system using extended m code is over 2㏈ better than that of OFCDM system using extended m sequence when the number of user is 8 and 16.

Analysis of an electrically actuated fractional model of viscoelastic microbeams

  • Bahraini, Seyed Masoud Sotoodeh;Eghtesad, Mohammad;Farid, Mehrdad;Ghavanloo, Esmaeal
    • Structural Engineering and Mechanics
    • /
    • v.52 no.5
    • /
    • pp.937-956
    • /
    • 2014
  • The MEMS structures usually are made from silicon; consideration of the viscoelastic effect in microbeams duo to the phenomena of silicon creep is necessary. Application of the fractional model of microbeams made from viscoelastic materials is studied in this paper. Quasi-static and dynamical responses of an electrically actuated viscoelastic microbeam are investigated. For this purpose, a nonlinear finite element formulation of viscoelastic beams in combination with the fractional derivative constitutive equations is elucidated. The four-parameter fractional derivative model is used to describe the constitutive equations. The electric force acting on the microbeam is introduced and numerical methods for solving the nonlinear algebraic equation of quasi-static response and nonlinear equation of motion of dynamical response are described. The deflected configurations of a microbeam for different purely DC voltages and the tip displacement of the microbeam under a combined DC and AC voltages are presented. The validity of the present analysis is confirmed by comparing the results with those of the corresponding cases available in the literature.

Mesoscale modelling of concrete for static and dynamic response analysis -Part 1: model development and implementation

  • Tu, Zhenguo;Lu, Yong
    • Structural Engineering and Mechanics
    • /
    • v.37 no.2
    • /
    • pp.197-213
    • /
    • 2011
  • Concrete is a heterogeneous material exhibiting quasi-brittle behaviour. While homogenization of concrete is commonly accepted in general engineering applications, a detailed description of the material heterogeneity using a mesoscale model becomes desirable and even necessary for problems where drastic spatial and time variation of the stress and strain is involved, for example in the analysis of local damages under impact, shock or blast load. A mesoscale model can also assist in an investigation into the underlying mechanisms affecting the bulk material behaviour under various stress conditions. Extending from existing mesoscale model studies, where use is often made of specialized codes with limited capability in the material description and numerical solutions, this paper presents a mesoscale computational model developed under a general-purpose finite element environment. The aim is to facilitate the utilization of sophisticated material descriptions (e.g., pressure and rate dependency) and advanced numerical solvers to suit a broad range of applications, including high impulsive dynamic analysis. The whole procedure encompasses a module for the generation of concrete mesoscale structure; a process for the generation of the FE mesh, considering two alternative schemes for the interface transition zone (ITZ); and the nonlinear analysis of the mesoscale FE model with an explicit time integration approach. The development of the model and various associated computational considerations are discussed in this paper (Part 1). Further numerical studies using the mesoscale model for both quasi-static and dynamic loadings will be presented in the companion paper (Part 2).

A Protection Capacity Evaluation of Vessel Protective Structures by Quasi-Static Collision Analysis (준정적 충돌해석을 통한 선박충돌방공호의 방호능력평가)

  • Lee, Gye-Hee
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.24 no.6
    • /
    • pp.691-697
    • /
    • 2011
  • In this study, the vessel collision protective structure and the vessel were modeled numerically and the quasi-static collision analysis was performed to evaluate the maximum protection capacity. In the modeling process of protective structure, the nonlinear behaviors of structure and the supporting conditions of ground including pull-out action were considered. In that of collision vessel, the bow of vessel was modeled precisely, because of the nonlinear behaviors were concentrated on it. For the efficient analysis, the mass scaling scheme was applied, also. To evaluate the differences and efficiency, the dynamic analyses were performed for the same model, additionally. Based on the obtained energy dissipation curves of the structure and the vessel, the moment that the collision force affected to the bridge substructures was determined and the maximum allowable collision velocity was evaluated. Because of the energy dissipation bound can be recognized clearly, this scheme can be used efficient in engineering work.

Crosstalk Analysis on Printed Circuit Board (인쇄뢰로기판의 누화해석)

  • 박경희;김제영;김수중
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.28A no.9
    • /
    • pp.700-707
    • /
    • 1991
  • Transmission line crosstalk of a printed circuit baord terminated with the linear resistive and nonlinear terminal network is analyzed. Based on a quasi-static approximation, crosstalk voltage is computed in frequency domain by applying the modal analysis. A scheme to calculate the maximum crosstalk voltage for a line terminated with the nonlinear digital gate is proposed. And also, crosstalk quantities are numerically obtained for the microstrip and strip line, and compared with the experimental data to validate relevance of this method.

  • PDF

Quay Mooring Analysis (안벽계류해석)

  • Tae-Myoung,Oh;Deuk-Joon,Yum
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.27 no.3
    • /
    • pp.47-55
    • /
    • 1990
  • This paper presents the quasi-static mooring analysis model for a vessel moored at the quay. The results of this analysis will aid the designer in determining the mooring configuration for the surface vessels subjected to wind, current and wave forces. And it will also help him in selecting the equipment for the fixed mooring system. The cumulative elastic behavior of the mooring lines invokes a complicated nonlinear problem since the mooring lines are relatively short and hang in air as noncoplanar configurations. This nonlinear mooring problem is solved in this paper by the load increment technique in which the external load is increased step by step taking all sources of nonlinearity into account.

  • PDF