• Title/Summary/Keyword: nonlinear primary resonance

Search Result 43, Processing Time 0.017 seconds

Nonlinear vibration and primary resonance of multilayer functionally graded shallow shells with porous core

  • Kamran Foroutan;Liming Dai
    • Steel and Composite Structures
    • /
    • v.48 no.3
    • /
    • pp.335-351
    • /
    • 2023
  • This research studies the primary resonance and nonlinear vibratory responses of multilayer functionally graded shallow (MFGS) shells under external excitations. The shells considered with functionally graded porous (FGP) core and resting on two types of nonlinear viscoelastic foundations (NVEF) governed by either a linear model with two parameters of Winkler and Pasternak foundations or a nonlinear model of hardening/softening cubic stiffness augmented by a Kelvin-Voigt viscoelastic model. The shells considered have three layers, sandwiched by functionally graded (FG), FGP, and FG materials. To investigate the influence of various porosity distributions, two types of FGP middle layer cores are considered. With the first-order shear deformation theory (FSDT), Hooke's law, and von-Kármán equation, the stress-strain relations for the MFGS shells with FGP core are developed. The governing equations of the shells are consequently derived. For the sake of higher accuracy and reliability, the P-T method is implemented in numerically analyzing the vibration, and the method of multiple scales (MMS) as one of the perturbation methods is used to investigate the primary resonance. The results of the present research are verified with the results available in the literature. The analytical results are compared with the P-T method. The influences of material, geometry, and nonlinear viscoelastic foundation parameters on the responses of the shells are illustrated.

Active Nonlinear Vibration Absorber for a Nonlinear System with a Time Delay Acceleration Feedback under the Internal Resonance, Subharmonic, Superharmonic and Principal Parametric Resonance Conditions Simultaneously

  • Mohanty, S;Dwivedy, SK
    • Journal of Aerospace System Engineering
    • /
    • v.13 no.5
    • /
    • pp.9-15
    • /
    • 2019
  • In this paper, dynamic analysis of a nonlinear active vibration absorber is conducted with a time delay acceleration feedback to suppress the vibration of a nonlinear single degree of freedom primary system. The primary system consisting of linear and nonlinear cubic springs, mass, and damper is subjected to the multi-harmonic hard excitation with a parametric excitation. It is proposed to reduce the vibration of the primary system and the absorber by using a lead zirconate titanate (PZT) stack actuator in series with a spring in the absorber which configures as an active vibration absorber. The method of multiple scales (MMS) is used to obtain the approximate solution of the system under the internal resonance, subharmonic, superharmonic, and principal parametric resonance conditions simultaneously. Frequency and time responses of the system are investigated considering a delay in the feedback for the various parameters of the absorber configuration and controlling force.

Analysis of the Harmonic Resonance during Restoration of Primary Restorative Transmission System (시송전계통의 고조파 공진현상에 대한 분석)

  • Lee, Kyeong-Seob;Lee, Heung-Jae
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.55 no.5
    • /
    • pp.191-194
    • /
    • 2006
  • Power system restoration following a wide area or complete blackout starts with energizing primary restorative transmission systems. During this primary restoration process, unexpected over-voltage may happen due to nonlinear interaction between the unloaded transformer and the transmission system. This is known as the harmonic resonance phenomenon that may cause burning out of transformer or other devices. Since the harmonic resonance originates from the nonlinear characteristics, it is very difficult to predict the occurrence of this phenomenon. This paper reports the analyses of the harmonic resonance occurred in domestic power system. Various analyses and results of the harmonic over-voltage is presented based on the PSCAD/EMTDC simulations.

A Study on the Harmonic Resonance during Restoration of Primary Restorative Transmission System (부하투입이 고조파 공진에 미치는 영향에 대한 고찰)

  • Lee, H.J.;Lee, K.S.;Park, S.M.;Yu, W.K
    • Proceedings of the KIEE Conference
    • /
    • 2004.11b
    • /
    • pp.249-251
    • /
    • 2004
  • Harmonic resonant overvoltage during restoration of primary restorative transmission system originates in switching operations and nonlinear characteristics of equipments. Actually it is difficult to predict the occurrence of harmonic overvoltage, since they result from nonlinear characteristics of transformers and other equipments. This paper describes the analysis of domestic primary restorative transmission system using PSCAD/EMTDC. The harmonic resonance is verified and showed the relation with equipments which have nonlinear characteristics such as generator and transformer in this paper. And the solution to prevent harmonic resonance is proposed too. As a result, the PSCAD/EMTDC simulation showed slightly conflictive results that had been presented by IEEE Power System Restoration Working Group report.

  • PDF

Nonlinear resonance of magneto-electro-thermal-elastic plates with geometric imperfection

  • Yin-Ping Li;Gui-Lin She
    • Computers and Concrete
    • /
    • v.34 no.3
    • /
    • pp.267-277
    • /
    • 2024
  • In this article, the primary resonance characteristic of magneto-electro-elastic plates is analyzed, in which the geometric imperfection, thermal effect and shear deformation are taken into account, Applying Hamilton's principle, derivation of nonlinear motion equations is performed. Through solving these equations according to the modified Lindstedt Poincare method, the impacts of external electric voltage, magnetic potential, boundary conditions, temperature changes, geometric imperfection and aspect ratio on the resonance behaviors of MEE plates are examined. It can be found that, as the electric potential rises, the resonance position will be advanced. As the magnetic potential goes up, the resonance frequency of the plates increases, thus delaying the resonance position. As the initial geometric imperfection rises, the resonance position does not change, and the hard spring properties of the plates gradually weaken.

Nonlinear resonance of axially moving GPLRMF plates with different boundary conditions

  • Jin-Peng Song;Gui-Lin She
    • Structural Engineering and Mechanics
    • /
    • v.86 no.3
    • /
    • pp.361-371
    • /
    • 2023
  • Boundary condition is an important factor affecting the vibration characteristics of structures, under different boundary conditions, structures will exhibit different vibration behaviors. On the basis of the previous work, this paper extends to the nonlinear resonance behavior of axially moving graphene platelets reinforced metal foams (GPLRMF) plates with geometric imperfection under different boundary conditions. Based on nonlinear Kirchhoff plate theory, the motion equations are derived. Considering three boundary conditions, including four edges simply supported (SSSS), four edges clamped (CCCC), clamped-clamped-simply-simply (CCSS), the nonlinear ordinary differential equation system is obtained by Galerkin method, and then the equation system is solved to obtain the nonlinear ordinary differential control equation which only including transverse displacement. Subsequently, the resonance response of GPLRMF plates is obtained by perturbation method. Finally, the effects of different boundary conditions, material properties (including the GPLs patterns, foams distribution, porosity coefficient and GPLs weight fraction), geometric imperfection, and axial velocity on the resonance of GPLRMF plates are investigated.

Analysis of the Harmonic Resonance during Restoration of Primary Restorative Transmission System (시송전계통 탁구과정에서의 고조파 공진 현상에 대한 고찰)

  • Lee, H.J.;Lee, K.S.;Park, S.M.
    • Proceedings of the KIEE Conference
    • /
    • 2005.07a
    • /
    • pp.220-222
    • /
    • 2005
  • Power system restoration following a wide area or complete blackout starts with energizing primary restorative transmission systems. During this primary restoration process, unexpected over-voltage may happen due to nonlinear interaction between the unloaded transformer and the transmission system. This is known as the harmonic resonance phenomenon that may cause burning out of transformer or other devices. Since the harmonic resonance originates from the nonlinear characteristics, it is very difficult to predict the occurrence of this phenomenon. This paper reports the possible existence of the harmonic resonance in Korean power system. Analysis of the harmonic over-voltage is presented based on the various simulations using PSCAD/EMTDC.

  • PDF

Nonlinear primary resonance of multilayer FG shallow shell with an FG porous core reinforced by oblique stiffeners

  • Kamran Foroutan;Liming Dai
    • Structural Engineering and Mechanics
    • /
    • v.91 no.5
    • /
    • pp.503-516
    • /
    • 2024
  • The present research examines the primary resonance (PR) behaviors of oblique stiffened multilayer functionally graded (OSMFG) shallow shells featuring an FG porous (FGP) core under an external excitation. The research considers two distinct types of FGP cores: one characterized by uniform porosity distribution (UPD) and the other by non-uniform porosity distribution (NPD) along the thickness direction. Furthermore, the study explores two types of shallow shells: one with external oblique stiffeners and one with internal oblique stiffeners, which might have angles that are similar or different from each other. Using the stress function alongside the first-order shear deformation theory (FSDT), the research establishes a nonlinear model for OSMFG shallow shells. The strain-displacement relationships are obtained utilizing FSDT and von-Kármán's geometric assumptions. The Galerkin approach is utilized to discretize the nonlinear governing equations, allowing for the analysis of stiffeners at varied angles. To validate the obtained results, a comparison is made not only with the findings of previous research but also with the response of PR obtained theoretically with the method of multiple scales, using the P-T method. Renowned for its superior accuracy and reliability, the P-T method is deemed an apt selection within this framework. Additionally, the study investigates how differences in material characteristics and stiffener angles affect the system's PR behaviors. The results of this study can be used as standards by engineers and researchers working in this area, and they can offer important information for the design and evaluation of the shell systems under consideration.

Nonlinear primary resonance of functionally graded doubly curved shells under different boundary conditions

  • Jinpeng Song;Yujie He;Gui-Lin She
    • Steel and Composite Structures
    • /
    • v.50 no.2
    • /
    • pp.149-158
    • /
    • 2024
  • Considering that different boundary conditions can have an important impact on structural vibration characteristics. In this paper, the nonlinear forced vibration behavior of functionally graded material (FGM) doubly curved shells with initial geometric imperfections under different boundary conditions is studied. Considering initial geometric imperfections and von Karman geometric nonlinearity, the nonlinear governing equations of FGM doubly curved shells are derived using Reissner's first order shear deformation (FOSD) theory. Three different boundary conditions of four edges simply supported (SSSS), four edges clamped (CCCC), clamped-clamped-simply-simply (CCSS) were studied, and a system of nonlinear ordinary differential equations was obtained with the help of Galerkin principle. The nonlinear forced vibration response of the FGM doubly curved shell is obtained by using the modified Lindstedt Poincare (MLP) method. The accuracy of this method was verified by comparing it with published literature. Finally, the effects of curvature ratio, power law index, void coefficient, prestress, and initial geometric imperfections on the resonance of FGM doubly curved shells under different boundary conditions are fully discussed. The relevant research results can provide certain guidance for the design and application of doubly curved shell.

A Study on the Analysis of Damping Loads to Prevent Harmonic Resonance (고조파 공진 억제를 위한 완충부하 투입량 분석에 관한 연구)

  • Lim, Chan-Ho;Lee, Kyeong-Seob;Yu, Won-Kun;Lee, Heung-Jae
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.2
    • /
    • pp.262-266
    • /
    • 2010
  • During the restoration process of primary restorative transmission system, the over voltage may happen due to nonlinear interaction between the unloaded transformer and the transmission system. This over voltage is caused by harmonic resonance and can be prevented by damping loads that are connected before restoration process of primary restorative transmission system. But it is very difficult to predict the occurrence possibility of the harmonic resonance previously. This paper analyzes the relationship between the harmonic resonance and the amount of damping loads to prevent the harmonic resonance. This paper calculates the minimum amount of damping loads to prevent harmonic resonance while changing the length of primary restorative transmission line. And this paper confirmed that the amount of damping loads is not proportional to length of transmission line. The result of this paper will be used as important experiment data to predict the occurrence possibility of harmonic resonance previously.