The accurate prediction of elastoplasticity under prescribed workloads is essential in the optimization of engineering structures. Mechanical experiments are carried out with the goal of obtaining reliable sets of material parameters for a chosen constitutive law via inverse identification. In this work, two sample geometries made of high strength steel plates were evaluated to determine the optimal configuration for the identification of Ludwik's nonlinear isotropic hardening law. Finite element model updating(FEMU) was used to calibrate the material parameters. FEMU computes the parameter changes based on the Hessian matrix, and the sensitivity fields that report changes of computed fields with respect to material parameter changes. A sensitivity analysis was performed to determine the influence of the sample geometry on parameter identifiability. It was concluded that the sample with thinned gauge region with a large curvature radius provided more reliable material parameters.
Jacob Ashiwere Abuchu;Godwin Chidi Ugwunnadi;Ojen Kumar Narain
Nonlinear Functional Analysis and Applications
/
제28권1호
/
pp.175-203
/
2023
In this paper, we study an iterative algorithm that is based on inertial proximal and contraction methods embellished with relaxation technique, for finding common solution of monotone variational inclusion, and fixed point problems of pseudocontractive mapping in real Hilbert spaces. We establish a strong convergence result of the proposed iterative method based on prediction stepsize conditions, and under some standard assumptions on the algorithm parameters. Finally, some special cases of general problem are given as applications. Our results improve and generalized some well-known and related results in literature.
Journal of information and communication convergence engineering
/
제22권2호
/
pp.133-138
/
2024
Dissolved oxygen (DO) is an important factor in ecosystems. However, the analysis of DO is frequently rather complicated because of the nonlinear phenomenon of the river system. Therefore, a convenient model-free algorithm for DO variable is required. In this study, a data-driven algorithm for predicting DO was developed by combining XGBoost and an artificial neural network (ANN), called ANN-XGB. To train the model, two years of ecosystem data were collected in Anyang, Seoul using the Troll 9500 model. One advantage of the proposed algorithm is its ability to capture abrupt changes in climate-related features that arise from sudden events. Moreover, our algorithm can provide a feature importance analysis owing to the use of XGBoost. The results obtained using the ANN-XGB algorithm were compared with those obtained using the ANN algorithm in the Results Section. The predictions made by ANN-XGB were mostly in closer agreement with the measured DO values in the river than those made by the ANN.
In this paper, the Gauge-Uzawa methods for the Darcy-Brinkman equations driven by temperature and salt concentration (DBTC) are proposed. The first order backward difference formula is adopted to approximate the time derivative term, and the linear term is treated implicitly, the nonlinear terms are treated semi-implicit. In each time step, the coupling elliptic problems of velocity, temperature and salt concentration are solved, and then the pressure is solved. The unconditional stability and error estimations of the first order semi-discrete scheme are derived, at the same time, the unconditional stability of the first order fully discrete scheme is obtained. Some numerical experiments verify the theoretical prediction and show the effectiveness of the proposed methods.
Journal of Korea Artificial Intelligence Association
/
제1권2호
/
pp.21-25
/
2023
The purpose of this study was to compare the performance using multiple regression models to predict the energy consumption of steel industry. Specific independent variables were selected in consideration of correlation among various attributes such as CO2 concentration, NSM, Week Status, Day of week, and Load Type, and preprocessing was performed to solve the multicollinearity problem. In data preprocessing, we evaluated linear and nonlinear relationships between each attribute through correlation analysis. In particular, we decided to select variables with high correlation and include appropriate variables in the final model to prevent multicollinearity problems. Among the many regression models learned, Boosted Decision Tree Regression showed the best predictive performance. Ensemble learning in this model was able to effectively learn complex patterns while preventing overfitting by combining multiple decision trees. Consequently, these predictive models are expected to provide important information for improving energy efficiency and management decision-making at steel industry. In the future, we plan to improve the performance of the model by collecting more data and extending variables, and the application of the model considering interactions with external factors will also be considered.
International Journal of Computer Science & Network Security
/
제24권7호
/
pp.24-30
/
2024
This paper investigates the identification and modeling of a climate greenhouse. Given real climate data from greenhouse installed in the LAPER laboratory in Tunisia, the objective of this paper is to propose a solution of the problem of nonlinear time variant inputs and outputs of greenhouse internal climate. Based on fuzzy logic technique combined with least mean squares (lms) a robust greenhouse climate model for internal temperature prediction is proposed. The simulation results are presented to demonstrate the effectiveness of the identification approach and the power of the implemented Takagi-Sugeno Fuzzy model based Algorithm.
도로의 안전성을 평가하기 위한 방법으로서 교통사고 자료를 이용하는 방법, 사전-사후평가를 통한 방법 또는 전문가 의견이나 기존 문헌을 통한 방법 등 다양한 방법들이 존재한다. 특히, 교차로 교통 안전성을 평가하는 경우 많은 연구들이 교통사고예측모형 개발을 통하여 교통사고와 관련한 원인과 안전성을 평가하고 있다. 교통사고예측모형 개발에 있어서 모형의 예측력과 전용성을 확보하는 것이 중요하다. 즉, 예측력을 확보함으로써 교통사고 건수나 교통 안전성 판단의 지표를 예측하는데 오차를 줄일 수 있고, 전용성을 확보함으로써 개발된 모형이 다른 지점이나 구간에 적용하더라도 문제없이 적용될 수 있는 대표성을 가질 수 있다. 따라서 본 연구에서는 교통사고예측모형 개발에 주로 사용되는 회귀모형과 인공신경망, 구조방정식을 이용하여 교통사고예측모형을 각각 개발하였으며, 개발될 모형의 예측력과 전용성을 평균절대오차와 평균제곱예측오차를 기준으로 확인하였다. 90개소 신호교차로의 모형개발자료를 이용하여 세 가지 방법으로 교통사고예측모형을 개발 후 개발데이터를 통해 예측력을 비교한 결과 인공신경망이 가장 높은 예측력을 보였다. 또한 모형의 전용성 검증을 위하여 별도로 수집한 33개소 신호교차로의 모형검증자료를 이용하여 개발된 모형을 검증한 결과 비선형 회귀모형이 가장 적합한 것으로 나타났다. 모형개발 과정에서 가장 높은 예측력을 보인 인공신경망의 경우 다른 대상지에서 수집된 모형검증 자료를 적용하였을 때 예측력에 큰 변화를 보여 전용성이 떨어진 것으로 분석되었다.
본 연구에서는 탄소나노튜브와 폴리프로필렌 기지 간 계면결합력과 나노튜브의 국부적 응집에 따른 나노복합재의 탄소성 거동 변화에 대한 파라메트릭 연구를 수행한다. 나노복합재의 탄소성 거동 예측을 위해 분자동역학 전산모사를 수행하고, 분자동역학 결과와 Mori-Tanaka 모델을 적용한 비선형 미시역학 모델을 연계하여 나노복합재 내 흡착계면의 탄소성 거동을 역으로 도출하는 2단계 영역분할 기법을 적용하였다. 미시역학 모델에서는 시컨트 계수방법을 Mori-Tanaka 모델에 적용하여 나노복합재의 비선형 거동을 예측하는 방법을 적용하였으며, 나노튜브와 기지 간 재료계면의 불완전 결합을 고려하기 위해 변위 불연속 조건을 적용하였다. 흡착영역을 고려한 미시역학 모델을 통해 흡착계면의 유무 및 재료계면 결합력 변화 그리고 나노튜브의 국부적 응집현상에 따른 나노복합재의 응력-변형률 관계를 예측하였다. 그 결과 나노튜브의 국부적 응집이 나노복합재의 강화효과를 저하시키는 가장 중요한 변수임을 확인하였다.
지구과학은 지구와 지구시스템을 기술(description)하던 기존의 역할에서 벗어나, 진화하는 지구 시스템 안에서 일어나는 프로세스의 모델링(process modeling), 시뮬레이션(simulation) 그리고 이러한 현상들을 구상화(visualization)하는 방향으로 그 접근 방법이 서서히 그러나 매우 역동적으로 변화하고 있다. 하지만 이러한 모델링 및 시뮬레이션은 현대의 컴퓨터 기술의 발달에도 불구하고 그 수행이 쉽지는 않다. 그 이유로는 지구의 현상들은 그 현상의 기초원인이 되는 물리적 화학적 프로세스들이 비선형적이며, 서로 다른 프로세스들이 상호 연동되어 발생하고, 시간에 따라 변화를 보이기 때문이다. 더구나 이러한 복잡한 프로세스들이 암석의 공극구조라는 매우 복잡한 구조 안에 일어날 때, 그 현상의 모델링 및 시뮬레이션은 그 어려움이 더욱 커지게 된다.따라서 이러한 지구시스템의 여러 가지 프로세스들에 대한 효과적인 모델링 및 시뮬레이션을 위해선 지구의 기본 구성단위인 암석의 구조, 즉 복잡한 공극구조의 이해 및 그 형태를 효과적으로 컴퓨터상에서 수치적으로 기술하는 방법의 개발이 선행되어야 한다. 본 발표에서는 이러한 공극스케일의 모델링을 위한 격자볼츠만 방법, 유한요소법을 이용한 수치방법과 그 결과와, 지구의 여러가지 비선형적이고 시간종속적인 프로세서의 모델링에의 응용가능성에 대한 내용을 제시한다.
본 연구에서는 지반 및 구조물의 문제점을 이상화 하는데 필요한 응용기술을 개발하기 위해 공개되어 있는 소프트웨어 즉 도스용 프로그램을 윈도우상에서 OpenSees 말뚝의 정적 지지지력과 침하를 분석할 수 있도록 하여 윈도우상에서 사용자가 편리하게 전 처리와 후 처리 및 경제조건 처리가 가능하도록 OpenSees프로그램을 개선하였다. 본 연구에 사용된 지지력 분석은 유한요소 해석과 합성된 하중전이함수에 근거한 수치해석방법이다. 본 연구에서는 흙-말뚝의 상호작용에 의한 마찰력과 선단 지지력을 각각 모델링하기 위해 경험적인 비선형 T-z과 Q-z곡선에 의한 하중전이법을 이용하여 하중재하에 따른 침하조건에서의 흙-말뚝의 반응을 나타내었다. 본 연구에서 예측한 정적 지지력과 침하량은 문헌에 의한 정적재하시험 결과와 잘 일치하는 것으로 나타나 유용하게 활용될 수 있을 것으로 판단된다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.