• Title/Summary/Keyword: nonlinear prediction

Search Result 920, Processing Time 0.026 seconds

A Study on the Simplified Presumption Method for the Prediction of Cooling and Heating Performance in a Fresh Air Load Reduction System by Using Geothermal Energy (지열 이용 외기부하 저감시스템의 냉각 및 가열효과 예측 간이추정법에 관한 연구)

  • Son, Won-Tug;Choi, Young-Sik
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.13 no.3
    • /
    • pp.169-181
    • /
    • 2010
  • This paper presents a feasibility study of a fresh air load reduction system by using an underground double floor space. The fresh air is introduced into the double slab space and passes through the opening bored into the footing beam. The air is cooled by the heat exchange with the inside surface of the double slab space in summer, and heated in winter. This system not only reduces sensible heat load of the fresh air by heat exchange with earth but also reduces latent heat load of the fresh air by ad/de-sorption of underground double slab concrete. In this paper, we proposed a simplified presumption method for the prediction of cooling and heating performance in the system. In conclusion the proposed method has been verified by comparing with the calculated value of the numerical analysis model by using nonlinear two-dimension hygroscopic question.

  • PDF

Torsional parameters importance in the structural response of multiscale asymmetric-plan buildings

  • Bakas, Nikolaos;Makridakis, Spyros;Papadrakakis, Manolis
    • Coupled systems mechanics
    • /
    • v.6 no.1
    • /
    • pp.55-74
    • /
    • 2017
  • The evaluation of torsional effects on multistory buildings remains an open issue, despite considerable research efforts and numerous publications. In this study, a large number of multiple test structures are considered with normally distributed topological attributes, in order to quantify the statistically derived relationships between the torsional criteria and response parameters. The linear regression analysis results, depict that the center of twist and the ratio of torsion (ROT) index proved numerically to be the most reliable criteria for the prediction of the modal rotation and displacements, however the residuals distribution and R-squared derived for the ductility demands prediction, was not constant and low respectively. Thus, the assessment of the torsional parameters' contribution to the nonlinear structural response was investigated using artificial neural networks. Utilizing the connection weights approach, the Center of Strength, Torsional Stiffness and the Base Shear Torque curves were found to exhibit the highest impact numerically, while all the other torsional indices' contribution was investigated and quantified.

A Study on the Life Prediction of Lithium Ion Batteries Based on a Convolutional Neural Network Model

  • Mi-Jin Choi;Sang-Bum Kim
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.15 no.3
    • /
    • pp.118-121
    • /
    • 2023
  • Recently, green energy support policies have been announced around the world in accordance with environmental regulations, and asthe market grows rapidly, demand for batteries is also increasing. Therefore, various methodologies for battery diagnosis and recycling methods are being discussed, but current accurate life prediction of batteries has limitations due to the nonlinear form according to the internal structure or chemical change of the battery. In this paper, CS2 lithium-ion battery measurement data measured at the A. James Clark School of Engineering, University of Marylan was used to predict battery performance with high accuracy using a convolutional neural network (CNN) model among deep learning-based models. As a result, the battery performance was predicted with high accuracy. A data structure with a matrix of total data 3,931 ☓ 19 was designed as test data for the CS2 battery and checking the result values, the MAE was 0.8451, the RMSE was 1.3448, and the accuracy was 0.984, confirming excellent performance.

Patch loading resistance prediction of plate girders with multiple longitudinal stiffeners using machine learning

  • Carlos Graciano;Ahmet Emin Kurtoglu;Balazs Kovesdi;Euro Casanova
    • Steel and Composite Structures
    • /
    • v.49 no.4
    • /
    • pp.419-430
    • /
    • 2023
  • This paper is aimed at investigating the effect of multiple longitudinal stiffeners on the patch loading resistance of slender steel plate girders. Firstly, a numerical study is conducted through geometrically and materially nonlinear analysis with imperfections included (GMNIA), the model is validated with experimental results taken from the literature. The structural responses of girders with multiple longitudinal stiffeners are compared to the one of girders with a single longitudinal stiffener. Thereafter, a patch loading resistance model is developed through machine learning (ML) using symbolic regression (SR). An extensive numerical dataset covering a wide range of bridge girder geometries is employed to fit the resistance model using SR. Finally, the performance of the SR prediction model is evaluated by comparison of the resistances predicted using available formulae from the literature.

Machine Learning based Seismic Response Prediction Methods for Steel Frame Structures (기계학습 기반 강 구조물 지진응답 예측기법)

  • Lee, Seunghye;Lee, Jaehong
    • Journal of Korean Association for Spatial Structures
    • /
    • v.24 no.2
    • /
    • pp.91-99
    • /
    • 2024
  • In this paper, machine learning models were applied to predict the seismic response of steel frame structures. Both geometric and material nonlinearities were considered in the structural analysis, and nonlinear inelastic dynamic analysis was performed. The ground acceleration response of the El Centro earthquake was applied to obtain the displacement of the top floor, which was used as the dataset for the machine learning methods. Learning was performed using two methods: Decision Tree and Random Forest, and their efficiency was demonstrated through application to 2-story and 6-story 3-D steel frame structure examples.

Vehicle-bridge coupling vibration analysis based fatigue reliability prediction of prestressed concrete highway bridges

  • Zhu, Jinsong;Chen, Cheng;Han, Qinghua
    • Structural Engineering and Mechanics
    • /
    • v.49 no.2
    • /
    • pp.203-223
    • /
    • 2014
  • The extensive use of prestressed reinforced concrete (PSC) highway bridges in marine environment drastically increases the sensitivity to both fatigue-and corrosion-induced damage of their critical structural components during their service lives. Within this scenario, an integrated method that is capable of evaluating the fatigue reliability, identifying a condition-based maintenance, and predicting the remaining service life of its critical components is therefore needed. To accomplish this goal, a procedure for fatigue reliability prediction of PSC highway bridges is proposed in the present study. Vehicle-bridge coupling vibration analysis is performed for obtaining the equivalent moment ranges of critical section of bridges under typical fatigue truck models. Three-dimensional nonlinear mathematical models of fatigue trucks are simplified as an eleven-degree-of-freedom system. Road surface roughness is simulated as zero-mean stationary Gaussian random processes using the trigonometric series method. The time-dependent stress-concentration factors of reinforcing bars and prestressing tendons are accounted for more accurate stress ranges determination. The limit state functions are constructed according to the Miner's linear damage rule, the time-dependent S-N curves of prestressing tendons and the site-specific stress cycle prediction. The effectiveness of the methodology framework is demonstrated to a T-type simple supported multi-girder bridge for fatigue reliability evaluation.

A Study on the Applicability of Hyperbolic Settlement Prediction Method to Consolidation Settlement in the Dredged and Reclaimed Ground (준설매립지반의 압밀침하에 대한 쌍곡선 침하예측기법의 적용성 연구)

  • Yoo, Nam-Jae;Jun, Sang-Hyun;Jeon, Jin-Yong
    • Journal of Industrial Technology
    • /
    • v.28 no.A
    • /
    • pp.11-17
    • /
    • 2008
  • Applicability of hyperbolic settlement prediction method to consolidation settlement in the dredged and reclaimed ground was assessed by analyzing results of centrifuge tests modelling self-weight consolidation of soft marine clay. From literature review about self-weight consolidation of soft marine clays located in southern coast in Korea, constitutive relationships of void ratio - effective stress - permeability and typical self-weight consolidation curves with time were obtained by analyzing centrifuge model experiments. For the condition of surcharge loading, exact solution of consolidation settlement curve obtained by using Terzaghi's consolidation theory was compared with results predicted by the hyperbolic method. It was found to have its own inherent error to predict final consolidation settlement. From results of analyzing thc self-weight consolidation with time by using this method, it predicted relatively well in error range of 0.04~18% for the case of showing the linearity in the relationship between T vs T/S in the stage of consolidation degree of 60~90 %. However, it overestimated the final settlement with large errors if those relation curves were nonlinear.

  • PDF

ARTIFICIAL NEURAL NETWORK FOR PREDICTION OF WATER QUALITY IN PIPELINE SYSTEMS

  • Kim, Ju-Hwan;Yoon, Jae-Heung
    • Water Engineering Research
    • /
    • v.4 no.2
    • /
    • pp.59-68
    • /
    • 2003
  • The applicabilities and validities of two methodologies fur the prediction of THM (trihalomethane) formation in a water pipeline system were proposed and discussed. One is the multiple regression technique and the other is an artificial neural network technique. There are many factors which influence water quality, especially THMs formations in water pipeline systems. In this study, the prediction models of THM formation in water pipeline systems are developed based on the independent variables proposed by American Water Works Association(AWWA). Multiple linear/nonlinear regression models are estimated and three layer feed-forward artificial neural networks have been used to predict the THM formation in a water pipeline system. Input parameters of the models consist of organic compounds measured in water pipeline systems such as TOC, DOC and UV254. Also, the reaction time to each measuring site along pipeline is used as input parameter calculated by a hydraulic analysis. Using these variables as model parameters, four models are developed. And the predicted results from the four developed models are compared statistically to the measured THMs data set. It is shown that the artificial neural network approaches are much superior to the conventional regression approaches and that the developed models by neural network can be used more efficiently and reproduce more accurately the THMs formation in water pipeline systems, than the conventional regression methods proposed by AWWA.

  • PDF

Design of Fuzzy Prediction System based on Dual Tuning using Enhanced Genetic Algorithms (강화된 유전알고리즘을 이용한 이중 동조 기반 퍼지 예측시스템 설계 및 응용)

  • Bang, Young-Keun;Lee, Chul-Heui
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.1
    • /
    • pp.184-191
    • /
    • 2010
  • Many researchers have been considering genetic algorithms to system optimization problems. Especially, real-coded genetic algorithms are very effective techniques because they are simpler in coding procedures than binary-coded genetic algorithms and can reduce extra works that increase the length of chromosome for wide search space. Thus, this paper presents a fuzzy system design technique to improve the performance of the fuzzy system. The proposed system consists of two procedures. The primary tuning procedure coarsely tunes fuzzy sets of the system using the k-means clustering algorithm of which the structure is very simple, and then the secondary tuning procedure finely tunes the fuzzy sets using enhanced real-coded genetic algorithms based on the primary procedure. In addition, this paper constructs multiple fuzzy systems using a data preprocessing procedure which is contrived for reflecting various characteristics of nonlinear data. Finally, the proposed fuzzy system is applied to the field of time series prediction and the effectiveness of the proposed techniques are verified by simulations of typical time series examples.

Pulse-Coded Train and QRS Feature extraction Using Linear Prediction (선형예측법을 이용한 심전도 신호의 부호화와 특징추출)

  • Song, Chul-Gyu;Lee, Byung-Chae;Jeong, Kee-Sam;Lee, Myoung-Ho
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1992 no.05
    • /
    • pp.175-178
    • /
    • 1992
  • This paper proposes a method called linear prediction (a high performant technique in digital speech processing) for analyzing digital ECG signals. There are several significant properties indicating that ECG signals have an important feature in the residual error signal obtained after processing by Durbin's linear prediction algorithm. The ECG signal classification puts an emphasis on the residual error signal. For each ECG's QRS complex. the feature for recognition is obtained from a nonlinear transformation which transforms every residual error signal to set of three states pulse-cord train relative to the original ECG signal. The pulse-cord train has the advantage of easy implementation in digital hardware circuits to achive automated ECG diagnosis. The algorithm performs very well feature extraction in arrythmia detection. Using this method, our studies indicate that the PVC (premature ventricular contration) detection has a at least 90 percent sensityvity for arrythmia data.

  • PDF