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Abstract: The applicabilities and validities of two methodologies for the prediction of THM (trihalomethane) forma-
tion in a water pipeline system were proposed and discussed. One is the multiple regression technique and the other is an
artificial neural network technique. There are many factors which influence water quality, especially THMs formations in
water pipeline systems. In this study, the prediction models of THM formation in water pipeline systems are developed
based on the independent variables proposed by American Water Works Association{AWWA). Multiple linear/nonlinear
regression models are estimated and three layer feed-forward artificial neural networks have been used to predict the
THM formation in a water pipeline system. Input parameters of the models consist of organic compounds measured in
water pipeline systems such as TOC, DOC and UV254. Also, the reaction time to each measuring site along pipeline is
used as input parameter calculated by a hydraulic analysis. Using these variables as model parameters, four models are
developed. And the predicted results from the four developed models are compared statistically to the measured THMs
data set. It is shown that the artificial neural network approaches are much superior to the conventional regression ap-
proaches and that the developed models by neural network can be used more efficiently and reproduce more accurately

the THMSs formation in water pipeline systems, than the conventional regression methods proposed by AWWA.
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1. INTRODUCTION contaminant levels for each individual THM
species since their health risks differ signifi-

New restrictive rules for filtration of surface
water and maximum levels of total trihalome-
thane in pipeline systems are being imposed by
the drinking water standards. The new disinfec-
tion/disinfectants by-products (DBP) rule ad-
dresses the possibility of specifying maximum

cantly. The study by US national cancer institute
in 1976 indicated that chloroform, a major
component of THMs, is an animal carcinogen
and eventually a suspected human carcinogen.
Bromoform and bromo-dichloromethane were
reported carcinogenic later. It is clear that prop-
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erly developed water quality models to simulate
the temporal and spatial variations of different
substances in pipeline system can potentially
assist the water utilities' operators in abiding
with the drinking water quality standards. A
number of such kind of models have emerged
during last decade. They were mainly developed
to model the chlorine under different dynamic
conditions. However, the appearance and moni-
toring of trihalomethane in water pipeline sys-
tems is practically difficult due to the complexi-
ties of analysis.

The THM compounds develop in chlorinated
water containing organic precursors, such as
humic and fulvic acids. It has been reported that
the relative contribution to the formation of
THMs by the humic acids react more readily
with the chlorine. Even though it is well known
that TTHM increases with time, information
about the reaction of the mechanism of the for-
matton of THM and its species is still limited.
This paper presented modeling techniques for
the prediction of , multiple linear and nonlinear
regression and artificial neural networks (ANN)
and application results for the prediction of
THM formation in water distribution system
based on statistical analysis of the observed wa-
ter quality data in water distribution system. The
model parameters are selected as used in for-
mula proposed by American Water Works Asso-
ciation (1993), Urano (1983) and Engerholm-
Amy (1987). A steady state hydraulic analysis
program (KYPIPE model) was applied to get
water

hydraulic  characteristics of  the

distribution system under investigation.

2. BACKGROUND INFORMATION

In this section, two approaches of relevant

prediction methods are reviewed. The prediction
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of THM formation in distribution systems is
influenced by other water quality parameters.
Therefore, prediction methods that have been
developed for THM formation are also useful
for regression method based on statistical analy-
sis of observed data.

There is a linear relationship between chlorine
consumption and the production of THMs with
a reaction, and the THM evolution is shown to
be the function of many water quality parame-
ters. In this study, the relationships between
THM formation and each water quality parame-
ter in water distribution system are investigated
and analyzed. And the prediction models of
THM formation are developed as a function of
water quality parameters, including the total
organic carbon, type of organic precursors, pH
of chlorination, temperature, UV light absorb-
ance, bromide level, and reaction time. The
formulas are expressed as a function of the
above water quality parameters using multiple
linear and nonlinear regression procedures.

Also, artificial neural networks are introduced
and its theoretical background will be provided
and discussed for the present study. The calcu-
lated results from a KYPIPE model for hydrau-
lic pipe flow analysis were used to get reaction
time.

2.1 Multiple linear and nonlinear regression
model

This approach makes a description by using a
set of equation. Information required to con-
struct this model can be obtained in variety ways,
such as observations and experiments. Instead of
kinetics of THM formation, other water quality
parameters in distribution systems have relative
contribution to the formation of THM. Regres-
sion equation can be generated by parameters
information. Scatter diagrams of each of the
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predictor variables were individually analyzed
against the response variable. Inclusion of more
predictor variables in a multiple linear regres-
sion model is worth testing in this study. A mul-
tiple linear regression model that expresses the
relationship between THM formation and water
quality parameters as independent variables, is
given by equation (1). And nonlinear regression
model can be described by equation (2).

y=pFo+ Bixi+ Box, +o0 4 Bx, (D
AT @

where g g ..., g denote model parameters,

X, X, x, and 'y denotes independent and

dependent variables, respectively.

2.2 Artificial neural network

An artificial neural network(ANN) is a net-
work of parallel, distributed information proc-
essing systems that relate an input vector to an
output vector. It consists of a number of infor-
mation processing elements called neurons or
nodes, which are grouped in layers. The input
layer processing elements receive the input vec-
tor and transmit the values to the next layer of
processing elements across connections where
this process is continued. This type of network,
where data flow on way(forward), is known as a
feed-forward network. A feed-forward ANN has
an input layer, an output layer, and one or more
hidden layers between the input and output lay-
ers. Each of the neurons in a layer is connected
to all the neurons of the next layer, and the neu-
rons in one layer are connected only to the neu-
rons of the immediate next layer. The strength of
the signal passing from one neuron to the other
depends on the weight of the interconnections.
The hidden layer enhances the network’s ability
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to model complex functions. The data passing
through the connections from one neuron to
another is manipulated by weights that control
the strength of a passing signal.

When these weights are modified, the data
transferred through the network change and the
network output alters. The neurons in a layer
share the same input and output connections, but
do not interconnect among themselves. All the
nodes within a layer act synchronously. Hence,
at any point of time, they will be at the same
stage of processing. The activation levels of the
hidden nodes are transmitted across connections
with the nodes in the output layer. The level of
activity generated at the output nodes is the
network's solution to the problem presented at
the input nodes. Each node multiplies every
input by its weight, sums the product, and then
passes the sum through a transfer function to
produce its result. At the beginning of training
the network weights are initialized, either with a
set of random values or based on some previous
experiences. The weights are optimized to get a
specific response from an ANN. When these
weights are modified, the data transfer through
the ANN changes and the overall network per-
formance alters. The learning algorithm adjusts
the weights such that for a given input, the dif-
ference between the network output and the ac-
tual output is small.

In this paper, the generalized Delta rule is
used to train a multi-layer perceptron for THM
formation. As an output, the water quality is
produced by presenting an input pattern to the
network. According to the difference between
the produced output and the observed, the pa-
rameters of network are adjusted to reduce the
output error. The error at the output layer
propagates backward to hidden layer, until it
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reaches the input layer. Because of feedback
propagation of error, the generalized Delta rule
is also called by error back propagation algo-
rithm. The output from node i, Oi, is connected
to the input node j through the interconnection
weight Wij. Unless node k is one of the input
nodes, the state of node k is :

0, =W, 0) €)

where, f(x)= 1 | called transfer function,

d+e™)

and the sum is the total of all nodes in the adja-
cent layer. This transfer function is usually a
steadily increasing S-shaped curve, called a
sigmoid function. The transfer function also
introduces a nonlinearity that further enhances
the network's ability to model complex function.
The sigmoid function is continuous, differenti-
able everywhere, and monotonically increasing.
The output is always bounded between 0 and 1,
and the input to the function can vary between
plus or minus infinity.

Let the resulting target(output) state node be t.
Thus, the error at the output node can be defined as

E =%Z(tk -0, “)

where node k is the output node. The gradi-
ent descent algorithm adapts the weights ac-
cording to the gradient error, i.e.,

awal - E9 )
W, O, W,

Specially, we define the error signal as

5o E ©)
J Oj
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With some manipulation, we can get the fol-
lowing generalized Delta rule:

A%=n5j0i @)

where 1 is an adaptation gain. The J, is com-
puted based on whether or not node j is in the
output layer. If node j is one of the output nodes,

§,=(t-0,)0,(1-0,) ®)

If node j is not in the output layer,
5,=1-0)0Y k5 W, ©)

In order to improve the convergence charac-
teristics, we can introduce a momentum term
with momentum gain o to Equation (7).

AW, (n+1)=1 8, O, +a AW, (n) (10)

where n represents the iteration index. Once
the neural network is trained, it produces
very fast output for a given input data. It only
requires a few multiplications and calcula-
tions of a transfer function.

3. DESIGN OF MODELS

3.1 Description of models architecture

Three techniques adopted in this study are
applied to develop prediction models. The mod-
els are evaluated by comparing the results in
terms of the accuracy, convenience, and ease of
use. The difference among models is mainly in
the input structure for the purpose of investigat-
ing its impact on the output accuracy and deter-
mining the most appropriate one for the case of
the THM formation in water distribution sys-
tems.
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Model I is consisted by seven independent
variables which are used as inputs with the
measured data. This model is expressed in the
multiple nonlinear form as follows,

DBP=k-T* - pH®-TOC® -(CL,)i - Br* an
-UV2547 18

where k, a, b, ¢, d, e, f, g denote regression coef-
ficients ; T = temperature(°C) TOC = total or-
ganic carbon(mg/L), (Cl,)e, = initial concentra-
tion of chlorination(mg/L), Br = bromide
level(mg/L), UV254 = UV light absorbance
(mg/L), t = reaction time(hr).

Model 1I is similar to model I, but it is ex-
pressed by linear form of each term. Six inde-
pendent variables are used as inputs and k', 1, m,
n, 0, p, q denote regression coefficients.

DBP=k'+IxT +mx pH +nxTOC+o0x(cl,),
+px(UV254)+qxt
(12)

The ANN is a computing paradigm that may
have more than one mode. The feed forward
neural networks with back-prbpagation learning
algorithm are the most widely used neural net-
works. This study employs three-layer networks.
The configuration of a neural network includes
determining the number of hidden layers, the
number of nodes in each of the hidden layers,
and the connection weights.

The ANNSs are trained with a set of input and
known output pairs called training set. Many
learning examples are repeatedly presented to a
network, and the process is terminated when the
difference is less than a specific value. The final
weight matrix of the trained network represents
its knowledge about the problem. Model 11T and
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model IV are constructed and applied to the
prediction to THM formation in pipeline system.
The system equations of models structure are
expressed as follows;

Model III
DBP = ANN

(T, pH, Cl,, TOC, DOC, UV 254, f]

Model IV
DBP = ANNIT, pH, Cl,,UV254,t](14)

(13)

The architecture of model III and model IV
can be seen in Fig. 1 and Fig. 2, respectively.

W,

hprt b Hde oiprt
Eyerl Byrerd Byerk

Fig. 1. Neural network model architecture
of Model 111

hpat b dder oiprt

Byerl Byer.l Byer K

Fig. 2. Neural network model architecture
of Model IV
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3.2 Indicator of model performance

A determination coefficient(R?) is one of the
most commonly used performance measures for
model evaluation. This provides information
about model predictive capabilities. Equation for
determination coefficient is given by :

N N —
R’ ZZ(Xi—)ACiy/Z(xi_xi)z (15)
i=) i=1

where ;idenotes the mean of measured value ,
X;and X, stands for the estimated value

Uppr
Node

0 1 1650. 954, 247500. | 2.8646

1 2 1200. 7126. 122500. | 1.4178

2 3 1200. 626. 120500. | 1.3947

3 4 1200. 2952. 119500. | 1.3831

3 46 150. 1360. 500. 0058

3 47 250. 1900. 500. 0058

4 5 1200. 400, 118500. | 1.3715

5 6 1200. 148. 112200. | 1.2986

5 49 350. 1910. 6300. 0729
49 50 200. 850. 800. 0093
49 51 350. 2774. 5500. 0637

6 7 1100. 2456. 112200. | 1.2986

7 8 2000. 695. 112200. | 1.2986

8 9 1100. 3191. 112200. | 1.2986

9 10 1100. 2751. 112000. | 1.2963
10 il 1100. 46. 112000. | 1.2963
11 12 1100. 58. 112070. | 1.2971
12 13 1100. 325. 112000. | 1.2963
13 14 2000. 665. 112000. | 1.2963
14 15 1100. 3232. 112000. | 1.2963
15 16 1100. 633. 111000. | 1.2847
16 17 1100. 2877. 110000. | 1.2731
17 18 2000. 1260. 110000. | 1.2731
18 19 1100. 1560. 110000. | 1.2731
19 20 1100. 3874. 109500. | 1.2674
19 55 100. 1420. 500. 0058
20 21 1100. 854, 107600. | 1.2454
20 60 300. 1693. 1900. 0220
60 61 300. 52. 1900. 0220
61 62 300. 73. 1900. 0220
21 22 1100. 5100. | ~ 107600. | 1.2454
22 23 1100. 26. 107600. | 1.2454
23 24 700. 5266. 28300. 3275
24 67 250. 300. 2000. 0231
24 25 700. 273. 26300. 3044
25 26 700. 2444, 25300. 2928
26 27 700. 100. 20300. 2350
27 28 700. 4184, 19000. 2199
27 70 300. 1278. 1300. 0150
28 29 700. 1155. 16000. 1852
28 71 300. 3263. 1200. 0139
71 72 250. 420. 1200. 0139
72 73 300. 810. 1200. 0139
73 74 200. 1501. 1200. 0139
28 80 250. 7600. 1800. 0208
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by each proposed model, and N is number of
observations.

4. APPLICATION AND RESULTS

To apply the THM prediction modelling in
pipeline system, water quality data are measured
and collected. Data describing the pipeline sys-
tem, which consist of 44 pipes and 45 nodes,
and sampling sites characteristics are listed in
Table 1. Ten sampling sites(WI1~W10) are se-

1_ 1975; W1 (CJ Water Treatment Plant)
2| 1.5790
3 1410
4 6705
46 | 11536 | W2 (G Water Tank)
47 | 44768
5 0916
6 0358
gg Z;g?} W3 (K Water Tank)
51| 1.1646
7 4993
8 4670
9 6487
}(1) (5)(6)842& W4 (J Pump Station)
12 0118
13 0662
14 4477
15 6582
16 1301
17 5965
18 8637
19 3235
?5) gggg W35 (S Assembly House)
21 1810
60 | 1.5116
gé 822; W6 (M Pump Station)
22 | 1.0810
23 0055 | W7 (CA Water Treatment Plant)
24 | 1.7187
67 1767 .
25 0959 | W8 (D Industrial Zone)
26 8922
27 0455
28 2.0339
70 | Te67s | WO (B Water Tank)
29 6667
71 | 46130
72 4123
73 1.1451
74 | 9431 ,
80 | 4.9742 | W10 (D Pump Station)




Water Engineering Research, Vol. 4, No. 2, 2003

Table 2. The correlation and determination coefficients of results for each model
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Multiple nonli
Model T 0917 0.841 Hitiple nontinear
regression
Multiple i
Model 1 0.937 0.878 tHiple inear
l'egreSSlOn
Model 111 0.986 0.972 ANN
Model IV 0.977 0.955 ANN

lected in the system where the measuring works of
water quality data are available such as pump sta-
tions, water tank and public facilities etc. Also, the
reaction time and hydraulic properties in Table 1 are
calculated easily by using KYPIPE model.

Correlation analysis are performed using col-
lected water quality data. Input variables are
selected by the consideration of the results from
correlation analysis. The linear relationships
between THM formation and other water quality
parameters(temperature, pH, Cl,, TOC, DOC,
UV254) can be shown in Fig. 3 through Fig. 9.
From the analysis, it is found that THM formation
is correlated in the order temperature, DOC, TOC,
pH, C12, UV254. 1t is important factor to predict
THM formation in pipeline system although the
correlation coefficient of reaction time shows low-
est value among water quality data as 0.006.

From the analysis of water quality data, the
model equations of multi-regression methods

0.06
u.04 R=0.793 y
} & e
—_— 4+
3 s . S
" *
é n.o2 - 9
"]
§ + - % - »
= .ot
/_,f""’“‘.'.,".‘
0.00 IS

Temperature(°C)

f

Fig. 3 Relationship between THMs and T

are developed as follow;

DBP = 6.188x T x pH 3 x C[0517 (16)
x UV 25403598 o ;006916

DBP = 0.05867 + 0.000687T —0.009643 pH
+0.01095Cl1, + 0.4876UV 254 + 0.0002916¢

17)

The correlation and determination coefficients
of the results for each model are presented in
Table 2 and the water pipeline system character-
istics under consideration are shown in Table 2.
In the prediction results of proposed four models
model III shows the excellent prediction capa-
bility. The determination coefficient of model 11
is 0.972 as shown in Table 2.

The relationship between measured and pre-
dicted THM are shown in Fig. 10 through Fig.
13 to investigate the applicability and perform-
ance of models. The variation of learning error

.
”4\"‘\ . R=0.827
— e B e
- e Radiag
= .oz - “’t .,
= -
E fe¥ T ey
= .02 + e
= -+ PP *
H .
F on.oi *i.._
+*
g.0p - *
a.0 4.6 r.0 T.6 2.0
pH

Fig 4. Relationship between THMs and pH



66

THMI{mgIL)

o.r 0.2 n.p 1.0 1.1 1.2 1.8
Cia(m gtL)

Fig. 5 Relationship between THMs and Cl,

THMs{mgrL)

DOC[mg/L)

THMI( Mg/ L)
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D.o 6.6 1.0 1.6 2.0 2.8
ToC(mglL)

Fig. 6 Relationship between THMs and TOC

THMs(mg/L)

0.0 0.0 0.07 0.0% II.I'IB g.10 0.11 0.2 Q.12
Uv2s54(mg/sL)

Fig. 7 Relationship between THMs and DOC Fig. 8 Relationship between THMs and UV254
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Fig. 9 Relationship between THMs and

reaction time
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Fig. 11 Comparison of result by Model 11
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Fig. 10 Comparison of result by Model I
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Fig. 12 Comparison of result by Model 11
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EBTIMATED a4 UE(mp/L)
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Fig. 13 Comparison of result by Model IV

of model III by iteration number can be seen in
Fig. 14. It can be found that the learning error is
continuously decreased as the training of the
model is progressing.

5. CONCLUSIONS

Water quality prediction models in pipeline
systems based on multiple linear/nonlinear and
neural network are developed and presented.
Especially, the relations between THM forma-
tion and other water quality parameters are
shown and analyzed to formulate the process.

In the prediction results of proposed four
models, model III based on neural network the-
ory shows the excellent prediction capability.
The ANN methodology has been reported to
provide reasonably good solutions for circum-
stances where there are complex systems that
may be poorly defined or understood using
mathematical equations, problems that deal with
uncertainty like water quality in pipeline systems.
Especially, the reaction in pipeline system compli-
cates defining and estimating the variation of water
qualities. In this respect, neural network can be an
effective and viable tool for not only the prediction
of THMs formation but also other water quality
factors in pipeline system.

67

sy

y.za

norma! @d erur
3 £
g £
N &

[T

u E “umu sauwm 2umy
Itpration num ber

Fig. 14 Variation of learning error according
to training iteration

Although the neural network method shows
the usefulness in this study for modelling water
quality in pipeline systems, the process of ap-
plications and data management (pre-processing
and post-processing) are well-defined for the
purposes of application areas. However, it has to
be noted that further research is needed to fully
understand its modeling capability.
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