• Title/Summary/Keyword: nonlinear prediction

검색결과 905건 처리시간 0.038초

비내진 상세를 가진 1:5 축소 철근콘크리트 골조의 비선형 거동에 대한 실험과 해석의 상관성 연구 (A Study of Correlation between Experiment and Analysis of Nonlinear Behaviors of A 1:5 Scale RC Frame with Nonseismic Details)

  • 이한선;우성우;허윤섭
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1999년도 학회창립 10주년 기념 1999년도 가을 학술발표회 논문집
    • /
    • pp.483-486
    • /
    • 1999
  • A series of dynamic and static tests were conducted to observe the actual responses of a 1:5 scale 3-story reinforced concrete (RC) frame which was designed only for gravity loads. One of the major objectives of these experiments are to provide the calibration to the available static and dynamic inelastic techniques. In this study, the experimental results were simulated by using a nonlinear analysis program for reinforced concrete frame, IDARC-2D. The evaluation of the degree of the simulation leads to the conclusion that while the global behaviors such as story drifts and shears can be in general simulated with the limited accuracy in the dynamic nonlinear analysis, it is rather easy and simple to get the fairly high level of accuracy in the prediction of global and local behaviors in the static nonlinear analysis by using IDARC-2D.

  • PDF

불확실성을 갖는 비선형 시스템의 자기 회귀 웨이블릿 신경망 기반 터미널 슬라이딩 모드 제어 (Self-Recurrent Wavelet Neural Network Based Terminal Sliding Mode Control of Nonlinear Systems with Uncertainties)

  • 이신호;최윤호;박진배
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2006년 학술대회 논문집 정보 및 제어부문
    • /
    • pp.315-317
    • /
    • 2006
  • In this paper, we design a terminal sliding mode controller based on neural network for nonlinear systems with uncertainties. Terminal sliding mode control (TSMC) method can drive the tracking errors to zero within finite time. Also, TSMC has the advantages such as improved performance, robustness, reliability and precision by contrast with classical sliding mode control. For the control of nonlinear system with uncertainties, we employ the self-recurrent wavelet neural network(SRWNN) which is used for the prediction of uncertainties. The weights of SRWNN are trained by adaptive laws based on Lyapunov stability theorem. Finally, we carry out simulations to illustrate the effectiveness of the proposed control.

  • PDF

비선형 지진해석을 통한 삼각망 철근상세를 갖는 중실 철근콘크리트 기둥의 성능평가 (Performance Assessment of Solid Reinforced Concrete Columns with Triangular Reinforcement Details Using Nonlinear Seismic Analysis)

  • 김태훈;나경웅;신현목
    • 한국지진공학회논문집
    • /
    • 제21권1호
    • /
    • pp.11-20
    • /
    • 2017
  • This study investigates the seismic performance of solid reinforced concrete columns with triangular reinforcement details using nonlinear seismic analysis. The developed reinforcement details are economically feasible and rational, and facilitate shorter construction periods. By using a sophisticated nonlinear finite element analysis program, the accuracy and objectivity of the assessment process can be enhanced. Solution of the equations of motion is obtained by numerical integration using Hilber-Hughes-Taylor (HHT) algorithm. The proposed numerical method gives a realistic prediction of seismic performance throughout the input ground motions for several column specimens. As a result, developed triangular reinforcement details were designed to be superior to the existing reinforcement details in terms of required performance.

비선형 로터-하우싱 시스템의 동특성 해석 연구 (A study on the Analysis of Dynamic Characteristic for Nonlinear Rotor-Housing Systems)

  • Kim, G.G.;Lim, J.H.;Chung, I.S.
    • 한국정밀공학회지
    • /
    • 제12권2호
    • /
    • pp.69-78
    • /
    • 1995
  • Nonlinear analysis methods are developed which will enable the reliable prediction of the dynamic behavior of the space shuttle main engine(SSME) turbopumps in the presence of bearing clearances and other local nonlinearities. A computationally efficient convolution method, based on discretized Duhamel and transition matrix integral formulations, is developed for the transient analysis. In the formulation, the coupling forces due to the onlinearities are treated as external forces acting on the coupled subsystems. Iteration is utilized to determine their magnitudes at each time increament. The method is applied to a nonlinear generic model of the high pressure oxygen turthods, the convolution approach proved to be more accurate and highly more efficient. For determining the nonlinear, steady-state periodic responses, an incremental harmonic balance(IHB) method was also developed. The method was successfully used to determine dominantly harmonic and subharmonic(subsynchronous) responses of the HPOTP generic model with bearing clearances. A reduction method similar to the impedance formulation utilized with linear systems is used to reduce the housing-totor models to their coordinates at the bearing clearances.

  • PDF

Comparative Study of Linear and Nonlinear Ultrasonic Techniques for Evaluation Thermal Damage of Tube-Like Structures

  • Li, Weibin;Cho, Younho;Li, Xianqiang
    • 비파괴검사학회지
    • /
    • 제33권1호
    • /
    • pp.1-6
    • /
    • 2013
  • Ultrasonic guided wave techniques have been widely used for long range nondestructive detection in tube-like structures. The present paper investigates the ultrasonic linear and nonlinear parameters for evaluating the thermal damage in aluminum pipe. Specimens were subjected to thermal loading. Flexible polyvinylidene fluoride (PVDF) comb transducers were used to generate and receive the ultrasonic waves. The second harmonic wave generation technique was used to check the material nonlinearity change after different heat loadings. The conventional linear ultrasonic approach based on attenuation was also used to evaluate the thermal damages in specimens. The results show that the proposed experimental setup is viable to assess the thermal damage in an aluminum pipe. The ultrasonic nonlinear parameter is a promising candidate for the prediction of micro-damages in a tube-like structure.

Prediction of Gain Expansion and Intermodulation Performance of Nonlinear Amplifiers

  • Abuelma'atti, Muhammad Taher
    • ETRI Journal
    • /
    • 제29권1호
    • /
    • pp.89-94
    • /
    • 2007
  • A mathematical model for the input-output characteristic of an amplifier exhibiting gain expansion and weak and strong nonlinearities is presented. The model, basically a Fourier-series function, can yield closed-form series expressions for the amplitudes of the output components resulting from multisinusoidal input signals to the amplifier. The special case of an equal-amplitude two-tone input signal is considered in detail. The results show that unless the input signal can drive the amplifier into its nonlinear region, no gain expansion or minimum intermodulation performance can be achieved. For sufficiently large input amplitudes that can drive the amplifier into its nonlinear region, gain expansion and minimum intermodulation performance can be achieved. The input amplitudes at which these phenomena are observed are strongly dependent on the amplifier characteristics.

  • PDF

Predicting Nonlinear Processes for Manufacturing Automation: Case Study through a Robotic Application

  • Kim, Steven H.;Oh, Heung-Sik
    • 대한산업공학회지
    • /
    • 제23권2호
    • /
    • pp.249-260
    • /
    • 1997
  • The manufacturing environment is rife with nonlinear processes. In this context, an intelligent production controller should be able to predict the dynamic behavior of various subsystems as they react to transient environmental conditions, the varying internal condition of the manufacturing plant, and the changing demands of the production schedule. This level of adaptive capability may be achieved through a coherent methodology for a learning coordinator to predict nonlinear and stochastic processes. The system is to serve as a real time, online supervisor for routine activities as well as exceptional conditions such as damage, failure, or other anomalies. The complexity inherent in a learning coordinator can be managed by a modular architecture incorporating case based reasoning. In the interest of concreteness, the concepts are presented through a case study involving a knowledge based robotic system.

  • PDF

적응성을 가진 강인한 비선형 예측제어기 설계 (Design of an Adaptive Robust Nonlinear Predictive Controller)

  • 박기용;윤지섭
    • 제어로봇시스템학회논문지
    • /
    • 제7권12호
    • /
    • pp.967-972
    • /
    • 2001
  • In this paper, an adaptive robust nonlinear predictive controller is developed for the continuous time nonlinear systems whose control objective is composed of the system output and its desired value. The basic control law is derived from the continuous time prediction model and its feedback dynamcis shows another from if input and output linearization. In order to cope with the parameter uncertainty, robust control is incorporated into the basic control law and the asymptotic convergence of tracking error to a certain bounded region is guaranteed. For stability and performance improvement within the bounded region, an adaptive control is introduced. Simulation tests for the motion control of an underwater wall-ranging robot confirm the performance improvement and the robustness of this controller.

  • PDF

묘사함수를 이용한 퍼지 제어 시스템의 자기진동 현상의 예측 - 정적 경우 (The Prediction of Self-Excited Oscillation of a Fuzzy Control System Based on the Describing Function - Static Case)

  • 김은태;노흥식;김동연;박민용
    • 전자공학회논문지C
    • /
    • 제35C권3호
    • /
    • pp.90-96
    • /
    • 1998
  • The self-excited oscillation is the phenomenon which can be observed in the systems composed of nonlinear elements. The phenomenon is of fundamental importance in nonlinear systems and, as far as the design of a nonlinear system is concerned, it should be considered along with the stability analysis. In this paper, the oscillation of a system controlled by a static nonlinear fuzzy controller is theoretically addressed. First, the describing functionof a static fuzzy controller is derived and then, based on the derived describing function, self-excited oscillation of the system controlled by a static fuzzy controller is predicted. To obtain the describing function of the static fuzzy controller, a simple struture is assumed for the fuzzy controller. Finally, computer simulation is included to show an example where the describing function given in the paper is used to predict the self-excited oscillation of a fuzzy-control system.

  • PDF

Correlation of Experimental and Analytical Seismic Responses of a 1:5 Scale 3-Story Reinforced Concrete Frame

  • Lee, Han-Seon;Woo, Sung-Woo
    • KCI Concrete Journal
    • /
    • 제12권1호
    • /
    • pp.3-16
    • /
    • 2000
  • A series of dynamic and static tests were conducted to observe the actual responses of a 1:5 scale 3-story reinforced concrete(RC) frame which was designed only for gravity loads. One of the major objectives of these experiments is to provide the calibration to the available static and dynamic inelastic analysis techniques. In this study, the experimental results were simulated by using a nonlinear analysis program for reinforced concrete frame, IDARC-2D. The evaluation of the degree of the simulation leads to the conclusion that while the global behaviors such as story drifts and shears can be in general simulated with the limited accuracy in the dynamic nonlinear analysis, it is rather easy and simple to get the fairly high level of accuracy in the prediction of global and local behaviors in the static nonlinear analysis by using IDARC-2D.

  • PDF