• 제목/요약/키워드: nonlinear model identification

검색결과 336건 처리시간 0.027초

증류공정의 차수감소모델 개발 및 비선형휠터기법을 이용한 모델인식에 관한 연구 (A study on development of a reduced-order distillation model and identification using nonlinear filtering techniques)

  • 김홍식;이광순
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1989년도 한국자동제어학술회의논문집; Seoul, Korea; 27-28 Oct. 1989
    • /
    • pp.367-371
    • /
    • 1989
  • A linear form of reduced-order distillation model is proposed, which contains the physical properties of distillation process and can be used in real time applications. The proposed model is linear in terms of liquid mole fraction and contains some tuning parameters. To verify the applicability of the proposed model, the model identification using nonlinear filtering techniques was applied. As a result, it was found that this model represented the simulated distillation process very closely as the parameters were converged.

  • PDF

Identification and Robust $H_\infty$ Control of the Rotational/Translational Actuator System

  • Tavakoli Mahdi;Taghirad Hamid D.;Abrishamchian Mehdi
    • International Journal of Control, Automation, and Systems
    • /
    • 제3권3호
    • /
    • pp.387-396
    • /
    • 2005
  • The Rotational/Translational Actuator (RTAC) benchmark problem considers a fourth-order dynamical system involving the nonlinear interaction of a translational oscillator and an eccentric rotational proof mass. This problem has been posed to investigate the utility of a rotational actuator for stabilizing translational motion. In order to experimentally implement any of the model-based controllers proposed in the literature, the values of model parameters are required which are generally difficult to determine rigorously. In this paper, an approach to the least-squares estimation of the parameters of a system is formulated and practically applied to the RTAC system. On the other hand, this paper shows how to model a nonlinear system as a linear uncertain system via nonparametric system identification, in order to provide the information required for linear robust $H_\infty$ control design. This method is also applied to the RTAC system, which demonstrates severe nonlinearities, due to the coupling from the rotational motion to the translational motion. Experimental results confirm that this approach can effectively condense the whole nonlinearities, uncertainties, and disturbances within the system into a favorable perturbation block.

유전자 알고리즘을 이용한 ARMAX 모델의 시스템 식별 (System Identification of ARMAX Model using the Genetic Algorithm)

  • 정경권;권성훈;이정훈;엄기환
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 1998년도 추계종합학술대회
    • /
    • pp.146-150
    • /
    • 1998
  • 본 논문에서는 유전자 알고리즘을 이용하는 새로운 시스템 식별 방식을 제안한다. 제안 한 방식은 ARMAX 모델을 이용하여 비선형 시스템을 파라미터 벡터와 측정 벡터로 나누고, 파라미터 벡터를 유전자 알고리즘을 이용하여 최적의 값을 구하여 ARMAX 모델의 파라미터를 조정한다. 기존의 Narendra의 4가지 식별 모델을 대상으로 시뮬레이션하여 제안한 식별 방식의 유용성을 확인하였다.

  • PDF

Dynamic state estimation for identifying earthquake support motions in instrumented structures

  • Radhika, B.;Manohar, C.S.
    • Earthquakes and Structures
    • /
    • 제5권3호
    • /
    • pp.359-378
    • /
    • 2013
  • The problem of identification of multi-component and (or) spatially varying earthquake support motions based on measured responses in instrumented structures is considered. The governing equations of motion are cast in the state space form and a time domain solution to the input identification problem is developed based on the Kalman and particle filtering methods. The method allows for noise in measured responses, imperfections in mathematical model for the structure, and possible nonlinear behavior of the structure. The unknown support motions are treated as hypothetical additional system states and a prior model for these motions are taken to be given in terms of white noise processes. For linear systems, the solution is developed within the Kalman filtering framework while, for nonlinear systems, the Monte Carlo simulation based particle filtering tools are employed. In the latter case, the question of controlling sampling variance based on the idea of Rao-Blackwellization is also explored. Illustrative examples include identification of multi-component and spatially varying support motions in linear/nonlinear structures.

비선형 동적 시스템의 파라미터 산정을 위한 주파수 영역 볼테라 모델의 이용 (Parameter Identification of Nonlinear Dynamic Systems using Frequency Domain Volterra model)

  • 백인열;권장섭
    • 한국지진공학회논문집
    • /
    • 제9권3호
    • /
    • pp.33-42
    • /
    • 2005
  • 비선형 함수로 모델링되는 동적 시스템의 비선형 파라미터를 결정하기 위하여 주파수 영역 볼테라 모델을 적용하는 연구를 수행하였다. 시간영역의 1차, 2차, 3차 전달함수에 해당하는 주파수 영역의 볼테라 핵함수를 비선형 파라미터 산정 과정에 3차 비선형 항까지 포함시켰다. Schetzen의 방법으로 시스템의 비선형 미분방정식에 적합한 볼테라 급수 표현식을 정하고, 이로부터 유도되는 비선형 전달함수를 입력 출력 관계식에 사용하였다. 관찰된 입력을 비선형 주파수 영역 모델에 대입하여 계산한 출력과 관찰된 출력의 차이로 오차를 정의한 후 오차를 최소화 시키는 시스템 파라미터의 값을 구하였다. 예제를 통하여 선형 주파수 구간 뿐만 아니라 2차 혹은 3차 비선형이 지배적인 주파수 범위 대에서 볼테라 모델이 충분한 정확성과 수렴성을 가지며 인식된 파라미터는 실제 값과 잘 일치함을 확인할 수 있었다.

현가장치의 비선형 설계변수 추정 (Nonlinear Parameter Estimation of Suspension System)

  • 박주표;최연선
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2003년도 춘계학술대회논문집
    • /
    • pp.281-286
    • /
    • 2003
  • A Suspension system of a car is composed of dampers and springs. The dampers and springs usually have nonlinear characteristics. However, the nonlinear characteristics of the springs and dampers through analytical model cannot agree with the experimental results. Therefore, the nonlinearity of the suing and damper should be known from the experimental results. In this study, the methods of system identification for nonlinear dynamic system in time domain are discussed and the nonlinear parameter estimation lot experimental data of an EF-SONATA car was done. The results show that a cubic and a coupled term should be considered to model the suspension system.

  • PDF

유전자 알고리즘과 하중값을 이용한 퍼지 시스템의 최적화 (Optimization of Fuzzy Systems by Means of GA and Weighting Factor)

  • 박병준;오성권;안태천;김현기
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제48권6호
    • /
    • pp.789-799
    • /
    • 1999
  • In this paper, the optimization of fuzzy inference systems is proposed for fuzzy model of nonlinear systems. A fuzzy model needs to be identified and optimized by means of the definite and systematic methods, because a fuzzy model is primarily acquired by expert's experience. The proposed rule-based fuzzy model implements system structure and parameter identification using the HCM(Hard C-mean) clustering method, genetic algorithms and fuzzy inference method. Two types of inference methods of a fuzzy model are the simplified inference and linear inference. in this paper, nonlinear systems are expressed using the identification of structure such as input variables and the division of fuzzy input subspaces, and the identification of parameters of a fuzzy model. To identify premise parameters of fuzzy model, the genetic algorithms is used and the standard least square method with the gaussian elimination method is utilized for the identification of optimum consequence parameters of fuzzy model. Also, the performance index with weighting factor is proposed to achieve a balance between the performance results of fuzzy model produced for the training and testing data set, and it leads to enhance approximation and predictive performance of fuzzy system. Time series data for gas furnace and sewage treatment process are used to evaluate the performance of the proposed model.

  • PDF

구조감쇠가 고려된 스펙트럴요소 모델을 이용한 구조손상규명 (Structural Damage Identification by Using the Structurally Damped Spectral Element Model)

  • 김정수;조주용;이우식
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2004년도 추계학술대회 논문집
    • /
    • pp.121-126
    • /
    • 2004
  • In this paper, a nonlinear structural damage identification algorithm is derived by taking into account the structurally damped spectral element model thinking over a real situation. The structural damage identification analyses are conducted by using the Newton-Raphson method. It is found that, in general Structural Damage Identification by using the Structurally Damped Spectral Element Model provides the same exact damage identification results when compared with the results obtained by the structurally undamped spectral model.

  • PDF

하이브리드 동정 알고리즘에 의한 최적 퍼지 시스템에 관한 연구 (A Study on Optimal fuzzy Systems by Means of Hybrid Identification Algorithm)

  • 오성권
    • 한국지능시스템학회논문지
    • /
    • 제9권5호
    • /
    • pp.555-565
    • /
    • 1999
  • 복잡하고 비선형적인 시스템의 규칙베이스 퍼지모델링을 위하여 퍼지시스템의 최적 동정알고리즘을 연구한다. 비선형 시스템은 퍼지모델의 입력변수와 퍼지 입력공간 분할에 의한 구조동정과 파라미터 동정을 통해 표현된다. 본 논문에서 규칙베이스 퍼지모델링은 비선형 시스템을 위해 퍼지추론방법과 두 종류의 최적화 이론의 결합에 의한 하이브리드 구졸를 이용하여 시스템 구조와 파라미터동정을 수행한다. 퍼지모델의 추론방법은 간략추론 및 선형추론에 의한다. 제안된 하이브리드 최적 동정 알고리즘은 유전자 알고리즘과 개선된 콤플렉스 방법을 이용한다. 여기서 유전자 알고리즘은 전반부 퍼지규칙의 멤버쉽함수의 초기 파라미터들을 결정하기 위해 사용되고 강력한 자동동조 알고리즘인 개선된 콤플렉스 방법은 정교한 파라미터들을 얻기 위해 수행된다. 따라서 최적 퍼지모델을 위해 전반부 파라미터 동정에는 하이브리드형의 최적 알고리즘을 이용하고 후반부 동정에는 최소자승법을 이용한다. 또한 학습과 테스트 데이터에 의해 생성된 퍼지모델의 성능결과 사이의 상호균형을 얻기 위해 하중계수를 가지는 합성 성능지수를 제안한다. 제안된 모델의 성능평가를 위해 두가지 수치적 예를이용한다.

  • PDF

지역시간지연 순환형 신경회로망을 이용한 비선형 시스템 규명 (System Identification of Nonlinear System using Local Time Delayed Recurrent Neural Network)

  • 정길도;홍동표
    • 한국정밀공학회지
    • /
    • 제12권6호
    • /
    • pp.120-127
    • /
    • 1995
  • A nonlinear empirical state-space model of the Artificial Neural Network(ANN) has been developed. The nonlinear model structure incorporates characteristic, so as to enable identification of the transient response, as well as the steady-state response of a dynamic system. A hybrid feedfoward/feedback neural network, namely a Local Time Delayed Recurrent Multi-layer Perception(RMLP), is the model structure developed in this paper. RMLP is used to identify nonlinear dynamic system in an input/output sense. The feedfoward protion of the network architecture provides with the well-known curve fitting factor, while local recurrent and cross-talk connections provides the dynamics of the system. A dynamic learning algorithm is used to train the proposed network in a supervised manner. The derived dynamic learning algorithm exhibit a computationally desirable characteristic; both network sweep involved in the algorithm are performed forward, enhancing its parallel implementation. RMLP state-space and its associate learning algorithm is demonstrated through a simple examples. The simulation results are very encouraging.

  • PDF