• 제목/요약/키워드: nonlinear mode shapes

검색결과 62건 처리시간 0.025초

HFFB technique and its validation studies

  • Xie, Jiming;Garber, Jason
    • Wind and Structures
    • /
    • 제18권4호
    • /
    • pp.375-389
    • /
    • 2014
  • The high-frequency force-balance (HFFB) technique and its subsequent improvements are reviewed in this paper, including a discussion about nonlinear mode shape corrections, multi-force balance measurements, and using HFFB model to identify aeroelastic parameters. To apply the HFFB technique in engineering practice, various validation studies have been conducted. This paper presents the results from an analytical validation study for a simple building with nonlinear mode shapes, three experimental validation studies for more complicated buildings, and a field measurement comparison for a super-tall building in Hong Kong. The results of these validations confirm that the improved HFFB technique is generally adequate for engineering applications. Some technical limitations of HFFB are also discussed in this paper, especially for higher-order mode response that could be considerable for super tall buildings.

Effects of initial imperfections on nonlinear behaviors of thin-walled members

  • Ohga, M.;Takaue, A.;Shigematsu, T.;Hara, T.
    • Structural Engineering and Mechanics
    • /
    • 제11권5호
    • /
    • pp.519-534
    • /
    • 2001
  • The effect of the initial imperfections on the nonlinear behaviors and ultimate strength of the thin-walled members subjected to the axial loads, obtained by the finite element stability analysis, are examined. As the initial imperfections, the bucking mode shapes of the members are adopted. The buckling mode shapes of the thin-walled members are obtained by the transfer matrix method. In the finite element stability analysis, isoparametric degenerated shell element is used, and the geometrical and material nonlinearity are considered based on the Green Lagrange strain definition and the Prandtl-Reuss stress-strain relation following the von Mises yield criterion. The U-, box- and I-section members subjected to the axial loads are adopted for numerical examples, and the effects of the initial imperfections on the nonlinear behaviors and ultimate strength of the members are examined.

지진 안전도 해석을 위한 Twisted Tripod 지지 구조를 갖는 풍력발전기의 말뚝-지반 상호작용 모델 평가 (Evaluation of Pile-Ground Interaction Models of Wind Turbine with Twisted Tripod Support Structure for Seismic Safety Analysis)

  • 박광연;박원석
    • 한국안전학회지
    • /
    • 제33권1호
    • /
    • pp.81-87
    • /
    • 2018
  • The seismic response, the natural frequencies and the mode shapes of an offshore wind turbine with twisted tripod substructure subject to various pile-ground interactions are discussed in this paper. The acceleration responses of the tower head by four historical earthquakes are presented as the seismic response, while the other loads are assumed as ambient loads. For the pile-ground interactions, the fixed, linear and nonlinear models are employed to simulate the interactions and the p-y, t-z and Q-z curves are utilized for the linear and nonlinear models. The curves are designed for stiff, medium and soft clays, and thus, the seven types of the pile-ground interactions are used to compare the seismic response, the acceleration of the tower head. The mode shapes are similar to each other for all types of pile-ground interactions. The natural frequencies, however, are almost same for the three clay types of the linear model, while the natural frequency of the fixed support model is quite different from that of the linear interaction model. The wind turbine with the fixed support model has the biggest magnitude of acceleration. In addition, the nonlinear model is more sensitive to the stiffness of clay than the linear pile-ground interaction model.

Comparison of alternative algorithms for buckling analysis of slender steel structures

  • Dimopoulos, C.A.;Gantes, C.J.
    • Structural Engineering and Mechanics
    • /
    • 제44권2호
    • /
    • pp.219-238
    • /
    • 2012
  • Objective of this paper is to compare linear buckling analysis formulations, available in commercial finite element programs. Modern steel design codes, including Eurocode 3, make abundant use of linear buckling loads for calculation of slenderness, and of linear buckling modes, used as shapes of imperfections for nonlinear analyses. Experience has shown that the buckling mode shapes and the magnitude of buckling loads may differ, sometimes significantly, from one algorithm to another. Thus, three characteristic examples have been used in order to assess the linear buckling formulations available in the finite element programs ADINA and ABAQUS. Useful conclusions are drawn for selecting the appropriate algorithm and the proper reference load in order to obtain either the classical linear buckling load or a good approximation of the actual geometrically nonlinear buckling load.

적합직교모드를 이용한 동적모드 AFM 의 비선형 모델링 (Nonlinear Modeling of Dynamic AFM Using Proper Orthogonal Modes)

  • 홍상혁;이수일
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2007년도 춘계학술대회논문집
    • /
    • pp.379-382
    • /
    • 2007
  • The proper orthogonal decomposition(POD) is used to the modal analysis of microcantilever of dynamic mode atomic force microscopy(AFM). The proper orthogonal modes(POM) are extracted from vibrating signals of microcantilever when it resonates and taps the sample. The POMs resemble the linear normal modes(LNM) of cantilever vibrating at each resonance frequency. Some of POMs in tapping microcantilever show quite different shapes from the POMs of the resonating microcantilever. Also this POMs can be applied to model for the complex nonlinear behavior of the dynamic mode AFM microcantilevers.

  • PDF

Characteristic equation solution of nonuniform soil deposit: An energy-based mode perturbation method

  • Pan, Danguang;Lu, Wenyan;Chen, Qingjun;Lu, Pan
    • Geomechanics and Engineering
    • /
    • 제19권5호
    • /
    • pp.463-472
    • /
    • 2019
  • The mode perturbation method (MPM) is suitable and efficient for solving the eigenvalue problem of a nonuniform soil deposit whose property varies with depth. However, results of the MPM do not always converge to the exact solution, when the variation of soil deposit property is discontinuous. This discontinuity is typical because soil is usually made up of sedimentary layers of different geologic materials. Based on the energy integral of the variational principle, a new mode perturbation method, the energy-based mode perturbation method (EMPM), is proposed to address the convergence of the perturbation solution on the natural frequencies and the corresponding mode shapes and is able to find solution whether the soil properties are continuous or not. First, the variational principle is used to transform the variable coefficient differential equation into an equivalent energy integral equation. Then, the natural mode shapes of the uniform shear beam with same height and boundary conditions are used as Ritz function. The EMPM transforms the energy integral equation into a set of nonlinear algebraic equations which significantly simplifies the eigenvalue solution of the soil layer with variable properties. Finally, the accuracy and convergence of this new method are illustrated with two case study examples. Numerical results show that the EMPM is more accurate and convergent than the MPM. As for the mode shapes of the uniform shear beam included in the EMPM, the additional 8 modes of vibration are sufficient in engineering applications.

Exact solutions of vibration and postbuckling response of curved beam rested on nonlinear viscoelastic foundations

  • Nazira Mohamed;Salwa A. Mohamed;Mohamed A. Eltaher
    • Advances in aircraft and spacecraft science
    • /
    • 제11권1호
    • /
    • pp.55-81
    • /
    • 2024
  • This paper presents the exact solutions and closed forms for of nonlinear stability and vibration behaviors of straight and curved beams with nonlinear viscoelastic boundary conditions, for the first time. The mathematical formulations of the beam are expressed based on Euler-Bernoulli beam theory with the von Karman nonlinearity to include the mid-plane stretching. The classical boundary conditions are replaced by nonlinear viscoelastic boundary conditions on both sides, that are presented by three elements (i.e., linear spring, nonlinear spring, and nonlinear damper). The nonlinear integro-differential equation of buckling problem subjected to nonlinear nonhomogeneous boundary conditions is derived and exactly solved to compute nonlinear static response and critical buckling load. The vibration problem is converted to nonlinear eigenvalue problem and solved analytically to calculate the natural frequencies and to predict the corresponding mode shapes. Parametric studies are carried out to depict the effects of nonlinear boundary conditions and amplitude of initial curvature on nonlinear static response and vibration behaviors of curved beam. Numerical results show that the nonlinear boundary conditions have significant effects on the critical buckling load, nonlinear buckling response and natural frequencies of the curved beam. The proposed model can be exploited in analysis of macrosystem (airfoil, flappers and wings) and microsystem (MEMS, nanosensor and nanoactuators).

알루미나가 분산된 세리아 안정화 지르코니아 세라믹스의 미세구조 (Microstructure of alumina-dispersed Ce-TZP ceramics)

  • 김민정;이종국
    • 한국결정성장학회지
    • /
    • 제10권2호
    • /
    • pp.122-127
    • /
    • 2000
  • 불규칙 입자형성을 갖는 Ce-TZP와 알루미나가 분산된 Ce-TZP 세라믹스를 세라아 도핑조선과 열처리 조건을 변화시켜 제조한 다음, 미세구조를 관찰하였다. 제조된 시편들은 상대밀도가 99% 이상인 고밀도의 소결체였으며, 정방정 및 입방정상 지르코니아 입자로 구성되었다. 도핑하지 않거나 소결만 시킨 시편의 경우 직선적인 입계와 정상적인 입자형성을 나타낸데 비하여 세리아를 침적법으로 도핑한 후 고온으로 열처리한 시편에서는 확산구동 입계이동이 일어나 입계 및 입자형성이 불규칙하였으며. 이러한 Ce-TZP에서는 입자당 평균 입계같이 정상입자에 비하여 크게 증가하였다. 알루미나를 분산시켜 소결한 {{{{ { Al}_{2 }{ O}_{3 } }}}}/Ce- TZP 시편의 경우, 알루미나 입자에 의해서 입성장이 크게 억제되었고, 세리아를 도핑한 후 소결과 열처리를 행한 {{{{ { Al}_{2 }{ O}_{3 } }}}}/Ce-TZP에서는 불규칙 입자형상이 형성되면서도 입성장이 억제되어 입자크기에 비하여 입계면적이 크게 증가하였다. 분산된 알루미나 입자들은 소결과 열처리 과정 중 입자크기가 증가하였고, 열처리 동안 많은 입자들이 입계에서 입내로 위치가 변화하였다. 정상적인 입자형성을 갖은 시편에서는 균열진전시 입계파괴가 주로 일어났으나 불규칙 입자형성을 갖는 시편에서는 주로 입내파괴가 관찰되었다.

  • PDF

Effects of imperfection shapes on buckling of conical shells under compression

  • Shakouri, Meisam;Spagnoli, Andrea;Kouchakzadeh, M.A.
    • Structural Engineering and Mechanics
    • /
    • 제60권3호
    • /
    • pp.365-386
    • /
    • 2016
  • This paper describes a systematic numerical investigation into the nonlinear elastic behavior of conical shells, with various types of initial imperfections, subject to a uniformly distributed axial compression. Three different patterns of imperfections, including first axisymmetric linear bifurcation mode, first non-axisymmetric linear bifurcation mode, and weld depression are studied using geometrically nonlinear finite element analysis. Effects of each imperfection shape and tapering angle on imperfection sensitivity curves are investigated and the lower bound curve is determined. Finally, an empirical lower bound relation is proposed for hand calculation in the buckling design of conical shells.

근사모드법을 이용한 철근콘크리트 구조물의 비선형해석 (Nonlinear Dynamic Anslysis of R/C Structures Using Approximate Modal Approach)

  • 장극관;이리형
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1994년도 봄 학술발표회 논문집
    • /
    • pp.77-84
    • /
    • 1994
  • An approximate method of normal coordinate idealization for use in nonlinear R/C frames has been developed. Normal coordinate apporaches have been used for nonlinear problems in the past, but they are not received wide acceptance because of the need for eigenvector computation in each time step. The proposed method cicumvents the eigenvector recalculation problem by evaluating a limited number of sets of mode shapes in performing the dynamic analysis. Then the predetermined sets of eigenvectors are used in the nonlinear dynamic analysis, repeatedly. The method is applied to frame structures with ductiles R/C elements. The plastic hinge zones are modeled with hysteresis loops which evince degrading stiffness and pinching effects. The method is applied to frames with local nonlinearities. Efficiencies and accuracies of the method for this application are presented.

  • PDF