• Title/Summary/Keyword: nonlinear medium

Search Result 272, Processing Time 0.02 seconds

A Comparative Study of Conceptual Models for Rainfall-Runoff Relationship in Small to Medium Sized Watershed -Application to Wi Stream Basin- (중수 하천유역에서 강우-유출관계의개념적 모형 비교연구 -위천유역을 중심으로-)

  • Lee, Jeong-Sik;Lee, Jae-Jun;Son, Gwang-Ik
    • Journal of Korea Water Resources Association
    • /
    • v.30 no.3
    • /
    • pp.279-291
    • /
    • 1997
  • This study is to evaluate the accuracy and practicality of the existing four conceptual models, two linear models of Clark and Nash model and two nonlinear models of Laruenson and WBN model, and to select an appropriate model to simulate the rainfall-runoff process in a given catchment. The variability of parameters for linear models is generally larger than that of nonlinear models. The errors in peak discharge are similar among the four conceptual models buy the errors in time to peak are quite different. Nonlinear models produce better results for time distribution than linear models. A comparison of the conceptual models to predict overall hydrograph using Friedman two-way analysis of variance by rank test indicates that nonlinear models are slightly better than linear models.

  • PDF

Compensation of Distorted WDM signals due to Cross Phase Modulation Effects using Mid-Span Spectral Inversion (상호 위상 변조에 의해 왜곡된 WDM 신호의 Mid-Span Spectral Inversion을 이용한 보상)

  • Lee, Seong-Real
    • Journal of Advanced Navigation Technology
    • /
    • v.7 no.2
    • /
    • pp.128-134
    • /
    • 2003
  • In this paper, we investigated the degree of compensation for WDM channel signal distortion due to chromatic dispersion, self phase modulation (SPM) and cross phase modulation (XPM) as a function of transmission length using mid-span spectral inversion (MSSI) compensation method. The considered system is $3{\times}40$ Gbps intensity modulation direct detection (IM/DD) WDM transmission system. This system has highly nonlinear dispersion shifted fiber (HNL-DSF) as a nonlinear medium in optical phase conjugator (OPC). We confirmed that the transmission length is more increased by applying MSSI to distorted signal due to chromatic dispersion, SPM and XPM as dispersion coefficient of fiber becomes higher. And the compensation degree of distorted WDM channels due to chromatic dispersion, SPM and XPM becomes better stable as dispersion coefficient of fiber becomes higher.

  • PDF

Effect of Cross Phase Modulation on Channel Compensation in 320 Gbps Intensity Modulation / Direct Detection WDM Transmission Systems (320 Gbps 강도 변조 직접 검파 WDM 시스템의 채널 보상에서 상호 위상 변조의 영향)

  • 이성렬;김지웅;손성찬
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.8 no.5
    • /
    • pp.1134-1140
    • /
    • 2004
  • In this paper, we investigated the effect of cross phase modulation(XPM) on compensation for WDM channel distortion due to chromatic dispersion, self phase modulation and XPM as a function of fiber dispersion coefficient and modulation format in 320 Gbps WDM systems. The considered WDM transmission system is based on mid-span spectral inversion(MSSI) compensation method, which has highly nonlinear dispersion shifted fiber(HNL-DSF) as nonlinear medium of optical phase conjugator (OPC) in the mid-way of total transmission line. We confirmed that the maximum channel input power resulting 1 dB eye opening penalty is reduced due to XPM effect on channel distortion, even if MSSI method was applied to WDM system. But, we confirmed that the effect of XPM on channel distortion becomes decrease as fiber dispersion coefficient of WDM system becomes larger. Futhermore, we confirmed that NRZ is better than RZ as a modulation format for similarly compensating overall WDM channels in WDM system with large fiber dispersion coefficient in order to minimize the effect of the XPM on channel distortion.

Cross Phase Modulation Effects on 120 Gbps WDM Transmission Systems with Mid-Span Spectral Inversion for Compensation of Distorted Optical Pulse (광 펄스 왜곡의 보상을 위해 Mid-Span Spectral Inversion 기법을 채택한 120 Gbps WDM 시스템에서 채널간 상호 위상 변조 현상의 영향)

  • 이성렬;권순녀;이윤현
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.14 no.7
    • /
    • pp.741-749
    • /
    • 2003
  • In this paper, we investigated the degree of compensation for WDM channel signal distortion due to chromatic dispersion, self phase modulation(SPM) and cross phase modulation(XPM). The considered system is 120 Gbps (3${\times}$40 Gbps) intensity modulation direct detection(IM/DD) WDM transmission system with path-averaged intensity approximation(PAIA) mid-span spectral inversion(MSSI) as compensation method. This system have highly nonlinear dispersion shifted fiber(HNL-DSF) as nonlinear medium in optical phase conjugator(OPC). We use 1 dB eye opening peralty(EOP) in order to evaluate the characteristics of compensation for distorted WDM channels. We confirmed that improvement of transmission distance and performance is achieved by MSSI method to distorted long-haul IM/DD WDM channels due to chromatic dispersion, SPM and XPM. And in the aspect of compensation for distorted pulse due to XPM, the MSSI method is effective to IM/DD WDM transmission system with high fiber dispersion coefficient.

Seismic retrofitting by base-isolation of r.c. framed buildings exposed to different fire scenarios

  • Mazza, Fabio;Mazza, Mirko
    • Earthquakes and Structures
    • /
    • v.13 no.3
    • /
    • pp.267-277
    • /
    • 2017
  • Base-isolation is now being adopted as a retrofitting strategy to improve seismic behaviour of reinforced concrete (r.c.) framed structures subjected to far-fault earthquakes. However, the increase in deformability of a base-isolated framed building may lead to amplification in the structural response under the long-duration horizontal pulses of high-magnitude near-fault earthquakes, which can become critical once the strength level of a fire-weakened r.c. superstructure is reduced. The aim of the present work is to investigate the nonlinear seismic response of fire-damaged r.c. framed structures retrofitted by base-isolation. For this purpose, a five-storey r.c. framed building primarily designed (as fixed-base) in compliance with a former Italian seismic code for a medium-risk zone, is to be retrofitted by the insertion of elastomeric bearings to meet the requirements of the current Italian code in a high-risk seismic zone. The nonlinear seismic response of the original (fixed-base) and retrofitted (base-isolated) test structures in a no fire situation are compared with those in the event of fire in the superstructure, where parametric temperature-time curves are defined at the first level, the first two and the upper levels. A lumped plasticity model describes the inelastic behaviour of the fire-damaged r.c. frame members, while a nonlinear force-displacement law is adopted for the elastomeric bearings. The average root-mean-square deviation of the observed spectrum from the target design spectrum together with a suitable intensity measure are chosen to select and scale near- and far-fault earthquakes on the basis of the design hypotheses adopted.

Characteristics of Compensation for Distorted WDM Channel with Inter-channel Interference due to Four-Wave Mixing (4-광파 혼합에 의한 채널 간섭이 존재하는 왜곡된 WDM 채널의 보상 특성)

  • 이성렬;손성찬;방효창;김지웅;조경룡
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.8 no.6
    • /
    • pp.1234-1242
    • /
    • 2004
  • In this paper, the characteristics of compensation for interferenced mid-channel signal by neighbor channels through four-wave mixing (FWM) process dominantly is investigated as a function of channel input power, fiber dispersion coefficient and transmission length in WDM system with equally spaced channels. The compensation method used in this research is mid-span spectral inversion(MSSI). The highly nonlinear dispersion shifted fiber (HNL-DSF) is used as a nonlinear medium of optical phase conjugator (OPC) in order to compensate wideband WDM signals. First, we confirmed that the effect of FWM on channel interference is gradually reduced as fiber dispersion coefficient becomes gradually smaller, independent of signal format. And, we confirmed that RZ is better than NRZ as a modulation format for transmitting high power channel with allowable reception quality. But realization of flexible WDM systems regardless of channel number variation is possible by using NRZ rather than RZ format.

Damage detection of nonlinear structures with analytical mode decomposition and Hilbert transform

  • Wang, Zuo-Cai;Geng, Dong;Ren, Wei-Xin;Chen, Gen-Da;Zhang, Guang-Feng
    • Smart Structures and Systems
    • /
    • v.15 no.1
    • /
    • pp.1-13
    • /
    • 2015
  • This paper proposes an analytical mode decomposition (AMD) and Hilbert transform method for structural nonlinearity quantification and damage detection under earthquake loads. The measured structural response is first decomposed into several intrinsic mode functions (IMF) using the proposed AMD method. Each IMF is an amplitude modulated-frequency modulated signal with narrow frequency bandwidth. Then, the instantaneous frequencies of the decomposed IMF can be defined with Hilbert transform. However, for a nonlinear structure, the defined instantaneous frequencies from the decomposed IMF are not equal to the instantaneous frequencies of the structure itself. The theoretical derivation in this paper indicates that the instantaneous frequency of the decomposed measured response includes a slowly-varying part which represents the instantaneous frequency of the structure and rapidly-varying part for a nonlinear structure subjected to earthquake excitations. To eliminate the rapidly-varying part effects, the instantaneous frequency is integrated over time duration. Then the degree of nonlinearity index, which represents the damage severity of structure, is defined based on the integrated instantaneous frequency in this paper. A one-story hysteretic nonlinear structure with various earthquake excitations are simulated as numerical examples and the degree of nonlinearity index is obtained. Finally, the degree of nonlinearity index is estimated from the experimental data of a seven-story building under four earthquake excitations. The index values for the building subjected to a low intensity earthquake excitation, two medium intensity earthquake excitations, and a large intensity earthquake excitation are calculated as 12.8%, 23.0%, 23.2%, and 39.5%, respectively.

Hysteretic characteristics of medium- to low-rise RC structures controlled by both shear and flexure evaluated by FEA and pseudo-dynamic testing

  • Ju-Seong Jung;Bok-Gi Lee;Kang-Seok Lee
    • Computers and Concrete
    • /
    • v.33 no.2
    • /
    • pp.217-240
    • /
    • 2024
  • The purpose of this study is to propose new hysteretic characteristics of medium- to low-rise RC structures controlled by both shear and flexure. Through previous study, the dual lateral force-resisting system composed of shear and flexural failure members has a new failure mechanism that cooperates to enhance the flexural capacity of the flexural failure member even after the failure of the shear member, and the existing theoretical equation significantly underestimates the ultimate strength. In this study, the residual lateral strength mechanism of the dual lateral force-resisting system was analyzed, and, as a result, an equation for estimating the residual flexural strength of each shear-failure member was proposed. The residual flexural strength of each shear-failure member was verified in comparison with the structural testing results obtained in previous study, and the proposed residual flexural strength equation for shear-failure members was tested for reliability using FEA, and its applicable range was also determined. In addition, restoring-force characteristics for evaluating the seismic performance of the dual lateral force-resisting system (nonlinear dynamic analysis), reflecting the proposed residual flexural strength equation, were proposed. Finally, the validity of the restoring-force characteristics of RC buildings equipped with the dual lateral force-resisting system proposed in the present study was verified by performing pseudo-dynamic testing and nonlinear dynamic analysis based on the proposed restoring-force characteristics. Based on this comparative analysis, the applicability of the proposed restoring-force characteristics was verified.

Dynamic Behaviors of a Bridge under Seismic Excitations Considering Stiffness Degradation with Various Abutment-Soil Conditions (교대인접토체의 특성에 따른 강성저하를 고려한 교량시스템의 지진거동분석)

  • 김상효;마호성;경규혁;이상우
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2000.04b
    • /
    • pp.347-354
    • /
    • 2000
  • The seismic behaviors of a bridge system with several simple spans are examined to see the effects of the longitudinal stiffness degradation due to abutment-soil interaction. The abutment-backfill system is modeled as one degree-of-freedom-system with nonlinear spring and linear damper. various soil-conditions surrounding the abutment such as loose sand, medium dense sand, and dense sand are considered in the bridge seismic analysis. The idealized mechanical model for the whole bridge system is modeled by adopting the multiple-degree-of-freedom system, which can consider components such as pounding phenomena, friction at the movable supports, rotational and translational motions of foundations, and the nonlinear pier motions. The stiffness of the abutment is found to be rapidly reduced at the beginning of the earthquakes, and to be converged to constant values shortly after the displacement approaches to the Predefined critical values. It is observed that the maximum relative distanced an maximum relative displacements are generally Increased as the relative density of a soil decreases As the peak ground acceleration increases, the response ratio of the case considering stiffness degradation to the case considering constant stiffness decreases.

  • PDF

An array of dark spatial solitons generated by an adiabatic amplification of nonlinear refractive index with the beam propagation distance (진행거리에 따른 비선형 굴절률의 점진적 증폭에 의하여 생성된 어두운 공간솔리톤 배열)

  • 전진호;김광훈;문희종;고광훈;이원규;노영철;이재형;장준성
    • Korean Journal of Optics and Photonics
    • /
    • v.8 no.4
    • /
    • pp.308-314
    • /
    • 1997
  • We have studied the generation of an array of dark spatial solitons in a self-deforcusing medium. Unlike a single fundamental dark spatial soliton, we show numerically that the generation of an array of dark spatial solitons from a spatially sinusoidal input beam needs an adiabatic amplification of nonlinear refractive index with the beam propagation distance. In experiment, we establish a Mach-Zehnder interferometer for making the sinusoidal input beam and use a cylindrical lens for the adiabatic amplification. We observe that the dark soliton's dip-width becomes narrower and the background intensity distribution becomes flatter with increasing the nonlinearity.

  • PDF