• 제목/요약/키워드: nonlinear mathematical method

검색결과 553건 처리시간 0.027초

NEW EXACT SOLUTIONS OF SOME NONLINEAR EVOLUTION EQUATIONS BY SUB-ODE METHOD

  • Lee, Youho;An, Jeong Hyang
    • 호남수학학술지
    • /
    • 제35권4호
    • /
    • pp.683-699
    • /
    • 2013
  • In this paper, an improved ($\frac{G^{\prime}}{G}$)-expansion method is proposed for obtaining travelling wave solutions of nonlinear evolution equations. The proposed technique called ($\frac{F}{G}$)-expansion method is more powerful than the method ($\frac{G^{\prime}}{G}$)-expansion method. The efficiency of the method is demonstrated on a variety of nonlinear partial differential equations such as KdV equation, mKd equation and Boussinesq equations. As a result, more travelling wave solutions are obtained including not only all the known solutions but also the computation burden is greatly decreased compared with the existing method. The travelling wave solutions are expressed by the hyperbolic functions and the trigonometric functions. The result reveals that the proposed method is simple and effective, and can be used for many other nonlinear evolutions equations arising in mathematical physics.

A NONLINEAR GALERKIN METHOD FOR THE BURGERS EQUATION

  • Kang, Sung-Kwon;Kwon, Yong-Hoon
    • 대한수학회논문집
    • /
    • 제12권2호
    • /
    • pp.467-478
    • /
    • 1997
  • A nonlinear Galerkin method for the Burgers equation is considered. Due to the lack of the divergence free condition, the nonlinear term is treated differently compared to that of the Navier-Stokes equations. Strong convergence results are proved for the nonlinear Galerkin method.

  • PDF

APPLICATION OF ROTHE'S METHOD TO A NONLINEAR WAVE EQUATION ON GRAPHS

  • Lin, Yong;Xie, Yuanyuan
    • 대한수학회보
    • /
    • 제59권3호
    • /
    • pp.745-756
    • /
    • 2022
  • We study a nonlinear wave equation on finite connected weighted graphs. Using Rothe's and energy methods, we prove the existence and uniqueness of solution under certain assumption. For linear wave equation on graphs, Lin and Xie [10] obtained the existence and uniqueness of solution. The main novelty of this paper is that the wave equation we considered has the nonlinear damping term |ut|p-1·ut (p > 1).

A Boundary Element Method for Nonlinear Boundary Value Problems

  • Park, Yunbeom;Kim, P.S.
    • 충청수학회지
    • /
    • 제7권1호
    • /
    • pp.141-152
    • /
    • 1994
  • We consider a numerical scheme for solving a nonlinear boundary integral equation (BIE) obtained by reformulation the nonlinear boundary value problem (BVP). We give a simple alternative to the standard collocation method for the nonlinear BIE. This method consists of one conventional linear system and another coupled linear system resulting from an auxiliary BIE which is obtained by differentiating both side of the nonlinear interior integral equations. We obtain an analogue BIE through the perturbation of the fundamental solution of Laplace's equation. We procure the super-convergence of approximate solutions.

  • PDF

ON NONLINEAR POLYNOMIAL SELECTION AND GEOMETRIC PROGRESSION (MOD N) FOR NUMBER FIELD SIEVE

  • Cho, Gook Hwa;Koo, Namhun;Kwon, Soonhak
    • 대한수학회보
    • /
    • 제53권1호
    • /
    • pp.1-20
    • /
    • 2016
  • The general number field sieve (GNFS) is asymptotically the fastest known factoring algorithm. One of the most important steps of GNFS is to select a good polynomial pair. A standard way of polynomial selection (being used in factoring RSA challenge numbers) is to select a nonlinear polynomial for algebraic sieving and a linear polynomial for rational sieving. There is another method called a nonlinear method which selects two polynomials of the same degree greater than one. In this paper, we generalize Montgomery's method [12] using geometric progression (GP) (mod N) to construct a pair of nonlinear polynomials. We also introduce GP of length d + k with $1{\leq}k{\leq}d-1$ and show that we can construct polynomials of degree d having common root (mod N), where the number of such polynomials and the size of the coefficients can be precisely determined.

NEW EXACT TRAVELLING WAVE SOLUTIONS FOR SOME NONLINEAR EVOLUTION EQUATIONS

  • Lee, Youho;An, Jaeyoung;Lee, Mihye
    • 충청수학회지
    • /
    • 제24권2호
    • /
    • pp.359-370
    • /
    • 2011
  • In this work, we obtain new solitary wave solutions for some nonlinear partial differential equations. The Jacobi elliptic function rational expansion method is used to establish new solitary wave solutions for the combined KdV-mKdV and Klein-Gordon equations. The results reveal that Jacobi elliptic function rational expansion method is very effective and powerful tool for solving nonlinear evolution equations arising in mathematical physics.

A QUADRATICALLY CONVERGENT ITERATIVE METHOD FOR NONLINEAR EQUATIONS

  • Yun, Beong-In;Petkovic, Miodrag S.
    • 대한수학회지
    • /
    • 제48권3호
    • /
    • pp.487-497
    • /
    • 2011
  • In this paper we propose a simple iterative method for finding a root of a nonlinear equation. It is shown that the new method, which does not require any derivatives, has a quadratic convergence order. In addition, one can find that a hybrid method combined with the non-iterative method can further improve the convergence rate. To show the efficiency of the presented method we give some numerical examples.

NUMERICAL METHDS USING TRUST-REGION APPROACH FOR SOLVING NONLINEAR ILL-POSED PROBLEMS

  • Kim, Sun-Young
    • 대한수학회논문집
    • /
    • 제11권4호
    • /
    • pp.1147-1157
    • /
    • 1996
  • Nonlinear ill-posed problems arise in many application including parameter estimation and inverse scattering. We introduce a least squares regularization method to solve nonlinear ill-posed problems with constraints robustly and efficiently. The regularization method uses Trust-Region approach to handle the constraints on variables. The Generalized Cross Validation is used to choose the regularization parameter in computational tests. Numerical results are given to exhibit faster convergence of the method over other methods.

  • PDF