• 제목/요약/키워드: nonlinear material characteristics

검색결과 345건 처리시간 0.025초

역해석 수법과 현장계측에 의한 비선형 구성법칙 결정에 관한 기초적인 연구 (Preliminary Study for Estimation of Nonlinear Constitutive Laws by using Back Analysis and Field Measurement)

  • 이재호;아쿠타가와 신니치;김영수;사쿠라이 순슈케;김광일;김낙영
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2008년도 춘계 학술발표회 초청강연 및 논문집
    • /
    • pp.1278-1289
    • /
    • 2008
  • Currently in increasing number of urban tunnels with small overburden are excavated according to the principle of the New Austrian Tunneling Method (NATM). Successful design, construction and maintenance of NATM tunnel in urban area demands prediction, control and monitoring of surface settlement, gradient and ground displacement with high accuracy. Use of measured displacement for parameter determination has been researched over the years, and one geotechnical engineering principle has been formed as back analysis. In this paper, back analysis of a ground deformational behavior involving nonlinear behavior is discussed. It is of primary importance to make reliable prediction of deformational behavior for shallow tunnels in soft ground. However, predictions made often prove to be incorrect due to complexity of constitutive law and other relevant factors. Back analysis therefore becomes more important, for it may be used to interpret measured displacement to derive nonlinear material characteristics. The paper shows some example in which a deformational mechanism is studied in the light of inhomogeneous distrubution of Young's module, from which a logic is derived to identify two different types of nonlinear constitutive relationships.

  • PDF

유기 비선형 광학 재료를 이용한 플라스틱 광섬유 제작 및 특성 (Characteristics and fabrication of POF using organic nonlinear optical materials)

  • 김응수;강신원
    • 센서학회지
    • /
    • 제15권4호
    • /
    • pp.297-301
    • /
    • 2006
  • We have fabricated a multi-mode nonlinear plastic optical fiber (POF) using organic nonlinear optical materials and demonstrated the propagation of light. The refractive indices of core and cladding are 1.5240 and 1.5172. We made a POF preform by rod-in tube method. The core diameter of the fabricated POF is about $30{\mu}m$. We evaluated the temperature characteristics of POF. The sensitivity is $0.345{\;}mW/^{\circ}C$ and the linearity of sensor was good.

압축하중을 받는 방진고무의 동특성 해석 및 실험 (Analysis and Experiment of the Dynamic Characteristics of Rubber Materials for Anti-Vibration under Compression)

  • 김국원;임종락;한용희;손희기;안태길
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 1998년도 춘계학술대회논문집; 용평리조트 타워콘도, 21-22 May 1998
    • /
    • pp.602-607
    • /
    • 1998
  • Rubber materials are extensively used in various machine design application, mainly for vibration/shock/noise control devices. Over the years an enormous effort has been put into developing procedures to provide properties of rubber material for design function. However, there are still a lot of difficulties in the understanding of dynamic characteristics of the rubber components in compression. In this paper, the dynamic characteristics of rubber materials for anti-vibration under compression were investigated. Dynamic and static tests for rubber material with 3 different hardness were performed. In dynamic tests, non-resonance method, impedance method, was used to obtain the complex modulus (storage modulus and loss factor) and the effects of static pre-strain on the dynamic characteristics were investigated. Also, a relation equation between linear dynamic and nonlinear static behavior of rubber material was discussed and its usefulness to predict their combined effects was investigated.

  • PDF

ABAQUS User Material(UMAT)을 이용한 콘크리트 비선형 해석 (Nonlinear Analysis of Concrete Using ABAQUS User Material(UMAT))

  • 조병완;김장호;김영진
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2003년도 봄 학술발표회 논문집
    • /
    • pp.145-152
    • /
    • 2003
  • This paper develops a relatively comprehensive and sophisticated constitutive model of concrete for finite element analysis of concrete structures. The present model accounts for the hydrostatic pressure sensitivity and Lode angle dependence behavior of concrete, not only in its strength criterion, but also in its hardening characteristics. The implementation is carried out through incorporating the developed concrete model in User Subroutine Material(UMAT) of the general-purpose FE program ABAQUS(v.5.8). It is found that the model can sufficiently predict the hardening as well as the softening behaviour of concrete under high confining pressure.

  • PDF

3축 방향 지반운동이 작용하는 지반-구조물 상호작용계의 비선형 지진응답 해석 (Nonlinear Earthquake Response Analysis of a Soil-Structure Interaction System Subjected to a Three-Directional Ground Motion)

  • 이진호;김재관;김정한
    • 한국전산구조공학회논문집
    • /
    • 제29권4호
    • /
    • pp.317-325
    • /
    • 2016
  • 이 연구에서는 3축 방향 지반운동이 작용하는 지반-구조물 상호작용계의 비선형 지진응답 해석을 수행한다. 비선형 거동이 예상되는 구조물과 지반의 근역은 비선형 유한요소에 의해 모형을 구성한다. 기하학적 형상과 재료 성질이 균일하고 선형 거동을 가정하는 원역지반은 무한 영역으로의 에너지 방사를 정확히 고려할 수 있는 3차원 perfectly matched discrete layer에 의해 수치 모형을 구성한다. 이와 같은 지반-구조물 상호작용계의 수치모형을 사용하여 3축 방향 지반운동이 작용하는 비선형 지진-구조물 상호작용계의 지진응답해석을 수행한다. 3축 방향 지반운동이 작용하는 경우에는 입력 지반운동의 특성에 따라 시스템의 응답이 우세하게 발현되는 방향이 존재하고 그 수준 또한 정밀한 지진응답해석을 통해 산정하여야 한다. 이 연구의 해석기법은 구조물과 지반의 재료 비선형 거동, 기초와 지반 경계면에서의 경계 비선형 거동 등 다양한 비선형 지반-구조물 상호작용 해석에 확장 적용할 수 있을 것이다.

Sub-modeling을 이용한 end-to-end 문합의 비선형 해석 (Nonlinear Analysis of End-to-End Anastomosis Using Sub-modeling)

  • 한근조;안성찬;심재준
    • 한국정밀공학회지
    • /
    • 제20권2호
    • /
    • pp.192-198
    • /
    • 2003
  • A finite element analysis of end-to-end artery/PTFE anastomosis has been presented in this study to evaluate the distribution of compliance and stresses in the vicinity of the anastomosis due to any mismatch in compliance characteristics. The artery wall was assumed to be made of linear isotropic material in this simplified model and a nonlinear analysis and convergency study with respect to increasing meshed element numbers were performed with a mean artery pressure loading of the artery-PTFE model. Also, sub-modeling method was Introduced to progress the accuracy of the finite element analysis. The results are as follow : 1. A hypercompliant zone on the artery side was observed around 4.Omm from the anastomosis and a high hoop stresses in the wall of artery and PTFE was dominant. 2. An artery displays large deformation so that nonlinear analysis and sub-modeling method was used. 3. An anastomosis with the thinner thickness and larger diameter PTFE (B type) could reduce the compliance disagreement.

Response of lap splice of reinforcing bars confined by FRP wrapping: application to nonlinear analysis of RC column

  • Pimanmas, Amorn;Thai, Dam Xuan
    • Structural Engineering and Mechanics
    • /
    • 제37권1호
    • /
    • pp.111-129
    • /
    • 2011
  • This paper presents a nonlinear analysis of reinforced concrete column with lap splice confined by FRP wrapping in the critical hinging zone. The steel stress-slip model derived from the tri-uniform bond stress model presented in the companion paper is included in the nonlinear frame analysis to simulate the response of reinforced concrete columns subjected to cyclic displacement reversals. The nonlinear modeling is based on a fiber discretization of an RC column section. Each fiber is modeled as either nonlinear concrete or steel spring, whose load-deformation characteristics are calculated from the section of fiber and material properties. The steel spring that models the reinforcing bars consists of three sub-springs, i.e., steel bar sub-spring, lap splice spring, and anchorage bond-slip spring connected in series from top to bottom. By combining the steel stress versus slip of the lap splice, the stress-deformation of steel bar and the steel stress-slip of bars anchored into the footing, the nonlinear steel spring model is derived. The analytical responses are found to be close to experimental ones. The analysis without lap splice springs included may result in an erroneous overestimation in the strength and ductility of columns.

Effect of cross-section geometry on the stability performance of functionally graded cylindrical imperfect composite structures used in stadium construction

  • Ying Yang;Yike Mao
    • Geomechanics and Engineering
    • /
    • 제35권2호
    • /
    • pp.181-194
    • /
    • 2023
  • The primary objective of this study is to examine the influence of geometry on the stability characteristics of cylindrical microstructures. This investigation entails a stability analysis of a bi-directional functionally graded (BD-FG) cylindrical imperfect concrete beam, focusing on the impact of geometry. Both the first-order shear deformation beam theory and the modified coupled stress theory are employed to explore the buckling and dynamic behaviors of the structure. The cylinder-shaped imperfect beam is constructed using a porosity-dependent functionally graded (FG) concrete material, wherein diverse porosity voids and material distributions are incorporated along the radial axis of the beam. The radius functions are considered in both uniform and nonuniform variations, reflecting their alterations along the length of the beam. The combination of these characteristics leads to the creation of BD-FG configurations. In order to enable the assessment of stability using energy principles, a numerical technique is utilized to formulate the equations for partial derivatives (PDEs).

벨트 구동계의 비선형 진동특성 해석 제목 (Analysis on the Nonlinear Vibration Characteristics of a Belt Driven System)

  • 김성걸;이신영
    • 대한기계학회논문집A
    • /
    • 제20권4호
    • /
    • pp.1251-1262
    • /
    • 1996
  • In this paper, a mathematical model for a belt driven system is proposed to analyse the vibration characteristics of the driving units with belts and the free and forced vibraiton anlyses are carried out. The mathematical model for a belt-driven system includes belts, pulleys, spindle and bearings. By using Hamilton's principle, four nonlinear governing equations and twelve nonlinear boundary conditions are derived. To linearize and discretize the nonlinear governing equations and boundary conditions, the perturbation method and Galerkin method are used. Also, the free vibration analyses for various parameters of a belt driven system, which are the tension of a belt, the length of a belt, the material properties of belts, the velocity of a velt and the mass of pulley are made. The forced vibration analyses of the system are performed and the dynamic responses for main parameters are anlysed with a belt driven system.

물질함수특성을 고려한 연약 점토지반의 압밀모델 및 수치해석 (Consolidation Model and Numerical Analysis for Soft Clay Ground Considering Characteristics of Material Function)

  • 전제성;이장덕;이송
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제8권2호
    • /
    • pp.123-136
    • /
    • 2004
  • Terzaghi의 1차원 압밀이론은 그 유도과정에 있어 몇 가지 중요한 가정사항을 내포하고 있으며, 이로인해 이 이론을 연약 점토지반의 압밀거동에 적용하는데는 많은 모순이 발생할 수 밖에 없다. 특히, 미소변형 및 선형 물질함수에 대한 가정은 실제 현장의 압밀현상과 비교할 때 많은 오류를 발생시키는 원인으로 작용한다. 이러한 이유에서, Gibson 등은 물질함수의 비선형성을 고려할 수 있는 1차원 비선형 유한변형률 압밀이론에 대한 엄밀해를 발표하였다. 그러나, 이 이론은 연직배수공법이 적용된 일반적인 연약 점토지반의 압밀현상에는 적용시킬 수 없다는 단점을 내포하고 있다. 본 연구에서는 포화된 지반의 수직 및 수평방향 배수를 고려하며 지반의 자중 및 투수성과 압축성에 대한 물질함수의 비선형적 특성을 반영할 수 있는 압밀모델을 제안하였다. 또한 제안된 모델을 실제 압밀현상에 적용하기 위한 수치해석 기법을 개발하였다. 수치해석에 이용된 물질함수의 특성은 표준압밀 시험 및 로우셀 시험, 개량 표준압밀 시험등을 이용하여 산정되었다.