• Title/Summary/Keyword: nonlinear interconnected system

Search Result 35, Processing Time 0.023 seconds

Decentralized control of interconnected nonlinear systems using a neural coordinator (신경회로망 조정기를 이용한 상호 연결된 비선형 시스템의 비집중 제어)

  • 정희태;전기준
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.33B no.6
    • /
    • pp.208-216
    • /
    • 1996
  • This paper presents a decentralized control scheme for interconnected systems with unmodeled nonlinearities and interactions using a neural coordinator. The interactions due to the interconnection and the unmodeled nonlinearity associated with each subsystem are represented by the deviations from linearized states of decomposed subsystems. the decentralized controller is composed of local controllers and a neural coordinator. The local controller for each subsystem is derived from linearized local system parameters y linear optimal control theory. the neural cooridnator generates a corrective control signal to cancel the effect of deviation sthrough the backpropagation learning with the rrors obtained form the difference of the local system outputs and reference model outputs. the reference model consists of the part of local system without deviations. The effectiveness of the proposed control scheme is demonstrated by simulation studies.

  • PDF

On the Control of Re-Structured Electric Power Systems

  • Feliachi Ali
    • International Journal of Control, Automation, and Systems
    • /
    • v.3 no.spc2
    • /
    • pp.363-375
    • /
    • 2005
  • The paper describes some of the challenges that face the control of nonlinear interconnected power systems. The challenges include the selection of appropriate control and information structures that could range from a completely decentralized to a fully centralized structure. Once a structure is proven to be feasible, the effectiveness of control signals needs to be assessed. Analytical tools are derived for this purpose in the first part of the paper, and they are illustrated with a case study that involves the design of a damping decentralized controller using a Thyristor Controlled Series Compensation device. The second part of the paper deals with the load following and tracking problem through automatic generation control for a system that has been re-structured or deregulated. This problem can be solved using a completely decentralized scheme. It is solved here using fuzzy rules and with an emphasis on compliance with NERC's standards and reduction of wear and tear of the equipment. It is illustrated with a test system that has three interconnected control areas. Finally, comments on the economics of control and the author's vision are presented.

Decentralized Nonlinear Voltage Control of Multimachine Power Systems with Non linear Interconnections (비선형 상호작용을 갖는 전력계통의 비선형 분산 전압제어)

  • Lee, Jae-Won;Yoon, Tae-Woong;Kim, Kwang-Youn
    • Proceedings of the KIEE Conference
    • /
    • 2003.11b
    • /
    • pp.47-50
    • /
    • 2003
  • For large-scale systems which are composed of interconnections of many lower-dimensional subsystems, decentralized control is preferable since it can alleviate the computational burden, avoid communication between different subsystems, and make the control more feasible and simpler. A power system is such a large-scale system where generators are interconnected through transmission lines. Decentralized control is therefore considered for power systems. In this paper, a robust decentralized excitation control scheme for interactions is proposed to enhance the transient stability of multimachine power systems. First we employ a DFL(Direct Feedback Linearization) compensator to rancel most of the nonlinearities; however, the resulting model still contains nonlinear interconnections. Therefore, we design a robust controller in order to deal with Interconnection terms. In this procedure, an upper bound of interconnection terms is estimated by an estimator. The resulting adaptive scheme guarantees the uniform ultimate boundedness of the closed-loop dynamic systems in the presence of the uncertainties.

  • PDF

Approximation-Based Decentralized Adaptive Output-Feedback Control for Nonlinear Interconnected Time-Delay Systems (비선형 상호 연결된 시간 지연 시스템을 위한 함수 예측 기법에 기반한 분산 적응 출력 궤환 제어)

  • Yoo, Sung-Jin
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.22 no.2
    • /
    • pp.174-180
    • /
    • 2012
  • This paper proposes a decentralized adaptive output-feedback controller design for nonlinear interconnected systems with unknown time delays. The interaction terms with unknown delays are related to all states of subsystems. The time-delayed functions are compensated by using appropriate Lyapunov-Krasovskii functionals and function approximation technique. The observer dynamic surface design technique is employed to design the proposed memoryless local controller for each subsystem. In addition, we prove that all signals in the closed-loop system are semiglobally uniformly bounded and control errors converge to an adjustable neighborhood of the origin.

Design of Robust $H_\infty$ Control for Interconnected Systems: A Homotopy Method

  • Chen Ning;Ikeda Masao;Gui Weihua
    • International Journal of Control, Automation, and Systems
    • /
    • v.3 no.2
    • /
    • pp.143-151
    • /
    • 2005
  • This paper considers a robust decentralized $H_\infty$ control problem for uncertain large-scale interconnected systems. The uncertainties are assumed to be time-invariant, norm-bounded, and exist in subsystems. A design method based on the bounded real lemma is developed for a dynamic output feedback controller, which is reduced to a feasibility problem for a nonlinear matrix inequality (NMI). It is proposed to solve the NMI iteratively by the idea of homotopy, where some of the variables are fixed alternately on each iteration to reduce the NMI to a linear matrix inequality (LMI). A decentralized controller for the nominal system is computed first by imposing structural constraints on the coefficient matrices gradually. Then, the decentralized controller is modified again gradually to cope with the uncertainties. A given example shows the efficiency of this method.

Decentralized control via sensor network and its theoretical approach to design of an active vibration isolator (센서네트워크를 통한 분산제어와 초정밀 방진기 설계에 관한 이론적 접근)

  • Song B.S.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.519-522
    • /
    • 2005
  • Decentralized Dynamic Surface Control(DDSC) for a class of nonlinear system interconnected via sensor network is presented in this paper. While a centralized design approach of DSC was developed in [1], the decentralized approach to deal with complex large-scale systems is proposed under the assumption that interconnected functions among subsystems are known via sensor network. As shown in [2], the separation principle for DDSC will allow us to design an estimation filter independently. Furthermore, the theoretical results are used to design and simulate an active vibration isolator under the assumption that many embedded sensors are distributed and communicate each other via wireless communication.

  • PDF

A Nonlinear Observer Design for P-Cells Chopper

  • Benmansour, K.;Bouchhida, O.;Tlemcani, A.;Leon, J. De;Djemail, M.
    • Journal of Electrical Engineering and Technology
    • /
    • v.5 no.4
    • /
    • pp.580-591
    • /
    • 2010
  • This paper deals with an observer design for a P-Cell Chopper. The goal is to reduce drastically the number of sensors in such system by using an observer in order to estimate all the capacitor voltages. Furthermore, considering an instantaneous model of a p-cell chopper, an interconnected observer is designed in order to estimate the capacitor voltages and some parameters of the model. This is realized by using only the load current measurement. Simulation results are given in order to illustrate the performance of such observer. To show the validity of our approach, experimental based a DSP results are presented.

Dynamic Analysis of Multibody Tracked Vehicles(II) : Development of the Nonlinear Contact Force Module (다물체로 구성된 궤도차량에 대한 동적 해석(II) : 비선형 접촉력 모듈 개발)

  • 신장호;최진환;이승종
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.4
    • /
    • pp.24-31
    • /
    • 1998
  • In this study, a procedure is presented for the dynamic analysis of a multibody tracked vehicle system. The planar vehicle model used in this investigation is assumed to consist of two kinematically decoupled subsystems. i.e., the chassis subsystem and track subsystem. The chassis subsystem includes the chassis frame, sprocket, idler and rollers, while the track subsystem is represented as a closed kinematic chain consisting of rigid links interconnected by revolute joints. The nonlinear contact force modules describing the interaction between track links, and sprocket, idler, rollers and ground will be developed.

  • PDF

Flexible 효과를 고려한 다물체 시스템의 동역학적 해석에 관한 연구

  • 최승렬;한창수
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1992.10a
    • /
    • pp.349-353
    • /
    • 1992
  • The purpose of this paper is to develop methods for the dynamic analysis of multibody system that consist of interconnected rigid and deformable component. The equations of motion are derived by using the Lagrange's equation and finite element theory for the elastic mechanism systems. The type of equation of motion is the differential algebraic equation included kinematic nonlinear algebraic equation. The generalized coordinate partitioning method is used for solving this equation. To show the validity of this analysis solver, couple of models were canalized and those results were compared with the commercial package(ADAMS).

Fuzzy neural network controller of interconnected method for civil structures

  • Chen, Z.Y.;Meng, Yahui;Wang, Ruei-yuan;Chen, Timothy
    • Advances in concrete construction
    • /
    • v.13 no.5
    • /
    • pp.385-394
    • /
    • 2022
  • Recently, an increasing number of cutting-edged studies have shown that designing a smart active control for real-time implementation requires piles of hard-work criteria in the design process, including performance controllers to reduce the tracking errors and tolerance to external interference and measure system disturbed perturbations. This article proposes an effective artificial-intelligence method using these rigorous criteria, which can be translated into general control plants for the management of civil engineering installations. To facilitate the calculation, an efficient solution process based on linear matrix (LMI) inequality has been introduced to verify the relevance of the proposed method, and extensive simulators have been carried out for the numerical constructive model in the seismic stimulation of the active rigidity. Additionally, a fuzzy model of the neural network based system (NN) is developed using an interconnected method for LDI (linear differential) representation determined for arbitrary dynamics. This expression is constructed with a nonlinear sector which converts the nonlinear model into a multiple linear deformation of the linear model and a new state sufficient to guarantee the asymptomatic stability of the Lyapunov function of the linear matrix inequality. In the control design, we incorporated H Infinity optimized development algorithm and performance analysis stability. Finally, there is a numerical practical example with simulations to show the results. The implication results in the RMS response with as well as without tuned mass damper (TMD) of the benchmark building under the external excitation, the El-Centro Earthquake, in which it also showed the simulation using evolved bat algorithmic LMI fuzzy controllers in term of RMS in acceleration and displacement of the building.